Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems (eBook)

eBook Download: PDF
2015 | 1st ed. 2016
XX, 257 Seiten
Springer International Publishing (Verlag)
978-3-319-21623-2 (ISBN)

Lese- und Medienproben

Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems - Qingsong Xu, Kok Kiong Tan
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book explores emerging methods and algorithms that enable precise control of micro-/nano-positioning systems. The text describes three control strategies: hysteresis-model-based feedforward control and hysteresis-model-free feedback control based on and free from state observation. Each paradigm receives dedicated attention within a particular part of the text.

Readers are shown how to design, validate and apply a variety of new control approaches in micromanipulation: hysteresis modelling, discrete-time sliding-mode control and model-reference adaptive control. Experimental results are provided throughout and build up to a detailed treatment of practical applications in the fourth part of the book. The applications focus on control of piezoelectric grippers.

Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems will assist academic researchers and practising control and mechatronics engineers interested in suppressing sources of nonlinearity such as hysteresis and drift when combining position and force control of precision systems with piezoelectric actuation.



Prof. Qingsong Xu has been working in the area of micro-/nano-mechatronics and robotics including design and precision control of micro/nano-positioning systems for about 10 years. He has published over 130 peer-reviewed papers in journals and conferences in related domains.
Prof. Kok Kiong Tan has been working in the area of precision motion control and instrumentation, advanced process control and autotuning, and general industrial automation for over 20 years. He has published over 10 books and 400 scientific papers in related fields.

Prof. Qingsong Xu has been working in the area of micro-/nano-mechatronics and robotics including design and precision control of micro/nano-positioning systems for about 10 years. He has published over 130 peer-reviewed papers in journals and conferences in related domains. Prof. Kok Kiong Tan has been working in the area of precision motion control and instrumentation, advanced process control and autotuning, and general industrial automation for over 20 years. He has published over 10 books and 400 scientific papers in related fields.

Series Editors' Foreword 7
Preface 9
Contents 13
Abbreviations 19
1 Introduction 21
1.1 Micro-/Nano-positioning Technique 21
1.2 Actuators and Sensors 22
1.3 Piezoelectric Nonlinearity 24
1.4 Feedforward Control Based on Hysteresis Models 25
1.4.1 Conventional Hysteresis Model 26
1.4.2 Intelligent Hysteresis Model 28
1.4.3 Feedforward Plus Feedback Control 28
1.5 Robust Feedback Control 29
1.5.1 Sliding-Mode Control 30
1.5.2 Model Predictive Control 31
1.5.3 Model-Reference Adaptive Control 32
1.5.4 Other Control Strategies 33
1.6 Position/Force Control in Micromanipulation 33
1.6.1 Hybrid Control 34
1.6.2 Impedance Control 34
1.6.3 Switching Control 35
1.7 Book Summary 36
References 36
Part I Hysteresis-Model-Based FeedforwardControl 41
2 Feedforward Control Based on Inverse Hysteresis Models 42
2.1 Introduction 42
2.2 System Description and Hysteresis Characterization 43
2.2.1 Experimental Setup 43
2.2.2 Hysteresis Characterization 44
2.3 Hysteresis Modeling 47
2.3.1 Hysteresis Modeling with the Bouc--Wen Model 47
2.3.2 Hysteresis Modeling with the MPI Model 48
2.3.3 Hysteresis Modeling with the LSSVM 51
2.4 Experimental Studies 55
2.4.1 Bouc--Wen Model Results 55
2.4.2 MPI Model Results 56
2.4.3 LSSVM Model Results 59
2.4.4 Model Capability Comparison 61
2.4.5 Generalization Study 63
2.5 Controller Design and Verification 66
2.5.1 Feedforward Controller Design 66
2.5.2 Feedforward Plus Feedback Controller Design 68
2.5.3 Controller Verification 68
2.6 Chapter Summary 73
References 73
3 Feedforward Control Without Modeling Inverse Hysteresis 75
3.1 Introduction 75
3.2 Dynamics Modeling of Hysteretic System 76
3.2.1 Dynamics Modeling with Bouc--Wen Hysteresis 76
3.2.2 Dynamics Modeling with Intelligent Hysteresis Model 77
3.3 Hysteresis Modeling Using LSSVM 78
3.3.1 Regression Model Establishment 78
3.3.2 LSSVM Modeling 78
3.4 Experimental Studies on Hysteresis Identification 80
3.4.1 Experimental Setup 80
3.4.2 Dynamics Model Identification 81
3.4.3 Bouc--Wen Model Results 82
3.4.4 LSSVM Model Results 85
3.5 Experimental Studies on Hysteresis Compensation 89
3.5.1 Feedforward Compensation 89
3.5.2 Feedforward Plus Feedback Control 91
3.6 Chapter Summary 92
References 93
Part II Hysteresis-Model-Free,State-Obser ver-Based Feedback Control 94
4 Model Predictive Discrete-Time Sliding-Mode Control 95
4.1 Introduction 95
4.2 Problem Formulation 97
4.2.1 Dynamics Modeling of a Nanopositioning System 97
4.2.2 Sliding-Mode Controller Design 99
4.2.3 Control Gain Design 101
4.3 DTSMC Design 102
4.3.1 Controller Design and Analysis 102
4.3.2 Tracking Error Bound Analysis 104
4.4 MPDTSMC Design 105
4.4.1 MPDTSMC Controller Design 105
4.4.2 Stability Analysis 107
4.4.3 State Observer Design 108
4.4.4 Tracking and Estimation Error Bound Analysis 109
4.5 Experimental Investigation 110
4.5.1 Experimental Setup 110
4.5.2 Hysteresis Characterization 110
4.5.3 Plant Model Identification 111
4.5.4 Controller Parameter Design 112
4.5.5 Simulation Studies 113
4.5.6 Experimental Testing Results 115
4.5.7 Discussion on System Performance 118
4.6 Chapter Summary 119
References 119
5 Model Predictive Output Integral Discrete-Time Sliding-Mode Control 121
5.1 Introduction 121
5.2 Problem Formulation 122
5.3 MPOIDSMC Design 123
5.3.1 OIDSMC Controller Design 123
5.3.2 MPOIDSMC Controller Design 125
5.4 Experimental Investigations 130
5.4.1 Experimental Setup 130
5.4.2 Plant Model Identification 131
5.4.3 Controller Parameter Design 132
5.4.4 Experimental Studies 134
5.4.5 Discussion on Controller Performance 137
5.5 Chapter Summary 138
References 138
Part III Hysteresis-Model-Free,State-Observer-Free Feedback Control 140
6 Digital Sliding-Mode Control of Second-Order Systems 141
6.1 Introduction 141
6.2 Dynamics Model and Problem Formulation 142
6.3 DSMC Design 144
6.4 Experimental Studies 147
6.4.1 Experimental Setup 147
6.4.2 Plant Model Identification 148
6.4.3 Experimental Results 149
6.4.4 Discussion 159
6.5 Chapter Summary 159
References 160
7 Digital Sliding-Mode Control of High-Order Systems 161
7.1 Introduction 161
7.2 Problem Formulation 162
7.2.1 System Modeling 162
7.2.2 Disturbance Estimation 164
7.3 IODSMC Design 165
7.3.1 Sliding Function Definition 165
7.3.2 Design of IODSMC 166
7.3.3 Robust IODSMC Design 168
7.4 Experimental Setup and Controller Setup 170
7.4.1 Experimental Setup 170
7.4.2 Plant Model Identification 171
7.4.3 Controller Parameter Design 172
7.5 Experimental Results and Discussion 173
7.5.1 Set-Point Positioning Results 173
7.5.2 Sinusoidal Positioning Results 173
7.5.3 Bandwidth Testing Results 175
7.5.4 Robustness Testing Results 176
7.5.5 Further Discussion 178
7.6 Chapter Summary 178
References 179
8 Digital Sliding-Mode Prediction Control 180
8.1 Introduction 180
8.2 Problem Formulation 181
8.2.1 System Modeling 181
8.2.2 Disturbance Estimation 182
8.3 DSMC Design 182
8.3.1 Sliding Function Definition 183
8.3.2 Design of DSMC 183
8.3.3 Error Bound Analysis 185
8.4 DSMPC Design 186
8.4.1 DSMPC Design 186
8.4.2 Stability Analysis 188
8.4.3 Error Bound Analysis 190
8.5 Experimental Studies and Discussion 190
8.5.1 Experimental Setup 190
8.5.2 Plant Model Identification 191
8.5.3 Controller Parameter Design 192
8.5.4 Experimental Studies 192
8.5.5 Further Discussion 196
8.6 Chapter Summary 197
References 197
9 Model-Reference Adaptive Control with Perturbation Estimation 199
9.1 Introduction 199
9.2 Dynamics Modeling and Perturbation Estimation 200
9.2.1 Dynamics Modeling 200
9.2.2 Perturbation Estimation 201
9.3 MRACPE Control Design 202
9.3.1 MRACPE Controller Design 202
9.3.2 Dead-Zone Modification of Adaptive Laws 205
9.3.3 Overview of Control Scheme 205
9.4 Experimental Setup and Controller Setup 206
9.4.1 Experimental Setup 206
9.4.2 Statics Testing and Dynamics Model Identification 208
9.4.3 Controller Setup 209
9.5 Experimental Results and Discussion 210
9.5.1 Set-Point Positioning Testing 210
9.5.2 Sinusoidal Positioning Testing 212
9.5.3 Control Bandwidth Testing 212
9.5.4 Discussion 214
9.6 Chapter Summary 216
References 217
Part IV Applications to Micromanipulation 218
10 Adaptive Impedance Control of Piezoelectric Microgripper 219
10.1 Introduction 219
10.2 Problem Formulation 221
10.2.1 Dynamics Modeling and Perturbation Estimation 222
10.2.2 Impedance Control Problem 223
10.3 ADSMGIC Scheme Design 224
10.3.1 Sliding Function Definition 224
10.3.2 ADSMGIC Design 225
10.3.3 Stability Analysis 226
10.3.4 Evaluation of Steady-State Errors 228
10.4 Experimental Setup and Controller Setup 229
10.4.1 Experimental Setup 229
10.4.2 Force Observer Design 230
10.4.3 Controller Setup 232
10.5 Experimental Results and Discussion 234
10.5.1 Interaction Control Results 234
10.5.2 Discussion on Control Performance 239
10.6 Chapter Summary 240
References 240
11 Position/Force Switching Control of a Miniature Gripper 243
11.1 Introduction 243
11.2 Experimental Setup and Calibration 244
11.2.1 Working Principle of the Gripper 244
11.2.2 Experimental Setup 246
11.2.3 Calibration of Position and Force Sensors 247
11.2.4 Gripping Range Testing 249
11.2.5 Frequency Response Testing 250
11.3 Position/Force Switching Control Scheme Design 251
11.3.1 Event-Based Switching Control Framework 251
11.3.2 Incremental DSMC Position Controller 252
11.3.3 Incremental PID Force Controller 255
11.3.4 Switching Criterion 255
11.4 Experimental Investigations and Discussion 256
11.4.1 Controller Setup 256
11.4.2 Position/Force Switching Control Results 257
11.4.3 Further Discussion 259
11.5 Chapter Summary 262
References 262
Index 264

Erscheint lt. Verlag 28.8.2015
Reihe/Serie Advances in Industrial Control
Zusatzinfo XX, 257 p. 113 illus., 112 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Schlagworte Adaptive Control • Feedback Control • Feedforward Control • Hysteresis • machine learning • Piezoelectric Actuation • Precision Motion Control • Sliding-Mode Control • State Observer • Variable-Structure Control
ISBN-10 3-319-21623-6 / 3319216236
ISBN-13 978-3-319-21623-2 / 9783319216232
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Vieweg (Verlag)
119,99