Behavioral Modeling and Predistortion of Wideband Wireless Transmitters (eBook)

eBook Download: PDF
2015 | 1. Auflage
272 Seiten
Wiley (Verlag)
978-1-119-00443-1 (ISBN)

Lese- und Medienproben

Behavioral Modeling and Predistortion of Wideband Wireless Transmitters -  Fadhel M. Ghannouchi,  Oualid Hammi,  Mohamed Helaoui
Systemvoraussetzungen
85,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Covers theoretical and practical aspects related to the behavioral modelling and predistortion of wireless transmitters and power amplifiers. It includes simulation software that enables the users to apply the theory presented in the book. In the first section, the reader is given the general background of nonlinear dynamic systems along with their behavioral modelling from all its aspects. In the second part, a comprehensive compilation of behavioral models formulations and structures is provided including memory polynomial based models, box oriented models such as Hammerstein-based and Wiener-based models, and neural networks-based models. The book will be a valuable resource for design engineers, industrial engineers, applications engineers, postgraduate students, and researchers working on power amplifiers modelling, linearization, and design.

Fadhel M. Ghannouchi University of Calgary, Canada Oualid Hammi King Fahd University of Petroleum and Minerals, Saudi Arabia Mohamed Helaoui University of Calgary, Canada

Preface

Chapter 1: Characterization of Wireless Transmitter Distortions

1.1 Introduction

1.1.1 RF Power Amplifiers Nonlinearity

1.1.2 Inter-modulation Distortion and Spectrum Regrowth

1.2 Impact of the Distortions on Transmitter Performances

1.3 Output Power versus Input Power Characteristic

1.4 AM/AM and AM/PM Characteristics

1.5 1dB Compression Point

1.6 Third and Fifth Order Intercept Points

1.7 Carrier to Inter-Modulation Distortion Ratio

1.8 Adjacent Channel Leakage Ratio

1.9 Error Vector Magnitude

References

Chapter 2: Dynamic Nonlinear Systems

2.1 Classification of Nonlinear Systems

2.1.1 Memoryless Systems

2.1.2 Systems with Memory

2.2 Memory in Microwave Power Amplification Systems

2.2.1 Nonlinear Systems without Memory

2.2.2 Weakly nonlinear and Quasi-Memoryless Systems

2.2.3 Nonlinear System with Memory

2.3 Baseband and Low-Pass Equivalent Signals

2.4 Origins and Types of Memory Effects in Power Amplification Systems

2.4.1 Origins of Memory Effects

2.4.2 Electrical Memory Effects

2.4.3 Thermal Memory Effects

2.5 Volterra Series Models

References

Chapter 3: Model Performance Evaluation

3.1 Introduction

3.2 Behavioral Modeling vs Digital Predistortion

3.3 Time Domain Metrics

3.3.1 Normalized Mean Square Error

3.3.2 Memory Effects Modeling Ratio

3.4 Frequency Domain Metrics

3.4.1 Frequency Domain Normalized Mean Square Error

3.4.2 Adjacent Channel Error Power Ratio

3.4.3 Weighted Error Spectrum Power Ratio

3.4.4 Normalized Absolute Mean Spectrum Error

3.5 Static Nonlinearity Cancellation Techniques

3.5.1 Static Nonlinearity Pre-Compensation Technique

3.5.2 Static Nonlinearity Post-Compensation Technique

3.5.3 Memory Effects Intensity

3.6 Discussion and Conclusion

References

Chapter 4: Quasi-Memoryless Behavior Models

4.1 Introduction

4.2 Modeling and Simulation of Memoryless/Quasi-Memoryless Nonlinear Systems

4.3 Bandpass to Baseband Equivalent Transformation

4.4 Look-up Table Models

4.4.1 Non-uniform Indexed Look-up Tables

4.5 Empirical Analytical Based Models

4.5.1 Class AB Amplifier Behavior Model

4.6 Saleh Based Models

4.6.1 Polar Saleh Model

4.6.2 Cartesian Saleh Model

4.6.3 Frequency-dependent Saleh Model

4.6.4 Ghorbani Model

4.6.5 Berman & Mahle Phase Model

4.6.6 Thomas-Weidner-Durrani Amplitude Model

4.6.7 Limiter Model

4.6.8 ARCTAN Model

4.6.9 Rapp Model

4.6.10 White Model

4.7 Power Series Models

4.7.1 Polynomial Model

4.7.2 Bessel Function Based Model

4.7.3 Chebyshev Series Based Model

4.7.4 Gegenbauer Polynomials Based Model

4.7.5 Zernike Polynomials Based Model

References

Chapter 5: Memory Polynomial Based Models

5.1 Introduction

5.2 Generic Memory Polynomial Model Formulation

5.3 Memory Polynomial Model

5.4 Variants of the Memory Polynomial Model

5.4.1 Orthogonal Memory Polynomial Model

5.4.2 Sparse-Delay Memory Polynomial Model

5.4.3 Exponentially Shaped Memory Delay Profile Memory Polynomial Model

5.4.4 Non-uniform Memory Polynomial Model

5.4.5 Unstructured Memory Polynomial Model

5.5 Envelope Memory Polynomial Model

5.6 Generalized Memory Polynomial Model

5.7 Hybrid Memory Polynomial Model

5.8 Dynamic Deviation Reduction Volterra Model

5.9 Comparison and Discussion

References

Chapter 6: Box-Oriented Models

6.1 Introduction

6.2 Hammerstein and Wiener Models

6.2.1 Wiener Model

6.2.2 Hammerstein Model

6.3 Augmented Hammerstein and Weiner Models

6.3.1 Augmented Wiener Model

6.3.2 Augmented Hammerstein Model

6.4 Three-Box Wiener-Hammerstein Models

6.4.1 Wiener-Hammerstein Model

6.4.2 Hammerstein-Wiener Model

6.4.3 Feed-Forward Hammerstein Model

6.5 Two-Box Polynomial Models

6.5.1 Models Description

6.5.2 Identification Procedure

6.6 Three-Box Polynomial Models

6.6.1 Parallel Three-blocks Model - Plume Model

6.6.2 Three layered biased memory polynomial Model

6.6.3 Rational Function Model for Amplifiers

6.7 Polynomial based Model with I/Q and DC impairments

6.7.1 Parallel Hammerstein (PH) based model for the alleviation of various imperfections in Direct Conversion transmitters

6.7.2 Two-Box Model with I/Q and DC Impairments

References

Chapter 7: Neural Network Based Models

7.1 Introduction

7.2 Basics of Neural Networks

7.3 Neural Networks Architecture for Modeling of Complex Static Systems

7.3.1 Single-Input Single-Output Feedforward Neural Network (SISO-FFNN)

7.3.2 Dual-Input Dual-Output Feedforward Neural Network (DIDO-FFNN)

7.3.3 Dual-Input Dual-Output Coupled Cartesian based Neural Network (DIDO-CC-NN)

7.4 Neural Networks Architectures for Modeling of Complex Dynamic Systems

7.4.1 Complex Time-Delay Recurrent Neural Network (CTDRNN)

7.4.2 Complex Time-Delay Neural Network (CTDNN)

7.4.3 Real Valued Time-Delay Recurrent Neural Network (RVTDRNN)

7.4.4 Real Valued Time-Delay Neural Network (RVTDNN)

7.5 Training Algorithms

7.6 Conclusion

References

Chapter 8: Characterization and Identification Techniques

8.1 Introduction

8.2 Test Signals for Power Amplifiers and Transmitters Characterization

8.2.1 Characterization using Continuous Wave Signals

8.2.2 Characterization using Two-Tone Signals

8.2.3 Characterization using Multi-Tone Signals

8.2.4 Characterization using Modulated Signals

8.2.5 Characterization using Synthetic Modulated Signals

8.2.6 Discussion: Impact of Test Signal on the Measured AM/AM and AM/PM Characteristics

8.3 Data De-embedding in Modulated Signals Based Characterization

8.4 Identification Techniques

8.4.1 Moving average Techniques

8.4.2 Model Coefficient Extraction Techniques

8.5 Robustness of System Identification Algorithms

8.5.1 The LS Algorithm

8.5.2 The LMS Algorithm

8.5.3 The RLS Algorithm

8.6 Conclusions

References

Chapter 9: Baseband Digital Predistortion

9.1 The Predistortion Concept

9.2 Adaptive Digital Predistortion

9.2.1 Closed Loop Adaptive Digital Predistorters

9.2.2 Open Loop Adaptive Digital Predistorters

9.3 The Predistorter's Power Range in Indirect Learning Architectures

9.3.1 Constant Peak Power Technique

9.3.2 Constant Average Power Technique

9.3.3 Synergetic CFR and DPD Technique

9.4 Small Signal Gain Normalization

9.5 Digital Predistortion Implementations

9.5.1 Baseband Digital Predistortion

9.5.2 RF Digital Predistortion

9.6 The Bandwidth and Power Scalable Digital Predistortion Technique

References

Chapter 10: Advanced Modeling and Digital Predistortion

10.1 Joint Quadrature Impairment and Nonlinear Distortion Compensation

10.1.1 Modeling of Quadrature Modulator Imperfections

10.1.2 Dual-Input Polynomial Model for Memoryless Joint Modeling of Quadrature Imbalance and PA Distortions

10.1.3 Dual-Input Memory Polynomial for Joint Modeling of Quadrature Imbalance and PA Distortions Including Memory Effects

10.1.4 Dual-Branch Parallel Hammerstein Model for Joint Modeling of Quadrature Imbalance and PA Distortions with Memory

10.1.5 Dual-Conjugate-Input Memory Polynomial for Joint Modeling of Quadrature Imbalance and PA Distortions Including Memory Effects

10.2 Modelling and Linearization of Nonlinear MIMO Systems

10.2.1 Impairments in MIMO Systems

10.2.2 Crossover Polynomial Model for MIMO Transmitters

10.2.3 Dual-Input Nonlinear Polynomial Model for MIMO Transmitters

10.2.4 MIMO Transmitters Nonlinear Multi-variable Polynomial Model

10.3 Modelling and Linearization of Dual Band Transmitters

10.3.1 Generalization of the Polynomial Model to Dual-Band Case

10.3.2 Two-Dimensional (2-D) Memory Polynomial Model for Dual-Band Transmitters

10.3.3 Phase-Aligned Multi-band Volterra DPD

10.4 Application of MIMO and Dual-band Models in Digital Predisortion

10.4.1 Linearization of MIMO Systems with Nonlinear Crosstalk

10.4.2 Linearization of Concurrent Dual-Band Transmitters using 2D Memory Polynomial Model

10.4.3 Linearization of Concurrent Tri-Band Transmitters using 3D Phase-Aligned Volterra Model

10.5 References

Index

Erscheint lt. Verlag 12.5.2015
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte Breitbandkommunikation • Circuit Theory & Design • Drahtlose Kommunikation • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Mikrowellen- u. Hochfrequenztechnik u. Theorie • Mobile & Wireless Communications • RF / Microwave Theory & Techniques • Schaltkreise - Theorie u. Entwurf
ISBN-10 1-119-00443-8 / 1119004438
ISBN-13 978-1-119-00443-1 / 9781119004431
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 11,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99