Learning with Partially Labeled and Interdependent Data (eBook)

eBook Download: PDF
2015 | 2015
XIII, 106 Seiten
Springer International Publishing (Verlag)
978-3-319-15726-9 (ISBN)

Lese- und Medienproben

Learning with Partially Labeled and Interdependent Data - Massih-Reza Amini, Nicolas Usunier
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data.

The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks.

Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data.

Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is also useful for advanced-level students of computer science, particularly those focused on statistics and learning.

Introduction.- Introduction to learning theory.- Semi-supervised learning.- Learning with interdependent data.

Erscheint lt. Verlag 7.5.2015
Zusatzinfo XIII, 106 p. 12 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Mathematik Statistik
Technik
Schlagworte learning to rank • learning with interdependent data • learning with partially labeled data • machine learning • multiclass learning • multiview learning • self-training • Semi-Supervised Learning • statistical learning theory
ISBN-10 3-319-15726-4 / 3319157264
ISBN-13 978-3-319-15726-9 / 9783319157269
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
34,93
Das umfassende Lehrbuch

von Michael Kofler

eBook Download (2024)
Rheinwerk Computing (Verlag)
34,93