Learning with Partially Labeled and Interdependent Data

Buch | Hardcover
XIII, 106 Seiten
2015 | 2015
Springer International Publishing (Verlag)
978-3-319-15725-2 (ISBN)

Lese- und Medienproben

Learning with Partially Labeled and Interdependent Data - Massih-Reza Amini, Nicolas Usunier
53,49 inkl. MwSt

This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data.

The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks.

Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data.

Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is also useful for advanced-level students of computer science, particularly those focused on statistics and learning.

Introduction.- Introduction to learning theory.- Semi-supervised learning.- Learning with interdependent data.

Erscheint lt. Verlag 21.5.2015
Zusatzinfo XIII, 106 p. 12 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Schlagworte learning to rank • learning with interdependent data • learning with partially labeled data • machine learning • multiclass learning • multiview learning • self-training • Semi-Supervised Learning • statistical learning theory
ISBN-10 3-319-15725-6 / 3319157256
ISBN-13 978-3-319-15725-2 / 9783319157252
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90