Soft Robotics (eBook)

Transferring Theory to Application
eBook Download: PDF
2015 | 1. Auflage
VIII, 293 Seiten
Springer-Verlag
978-3-662-44506-8 (ISBN)

Lese- und Medienproben

Soft Robotics -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The research areas as well as the knowledge gained for the practical use of robots are growing and expanding beyond manufacturing and industrial automation, making inroads in sectors such as health care and terrain sensing, as well as general assistive systems working in close interaction with humans. In a situation like this, it is necessary for future robot systems to become less stiff and more specialized by taking inspiration from the mechanical compliance and versatility found in natural materials and organisms.
At present, a new discipline is emerging in this area, called »Soft Robotics«. It particularly challenges the traditional thinking of engineers, as the confluence of technologies, ranging from new materials, sensors, actuators and production techniques to new design tools, will make it possible to create new systems whose structures are almost completely made of soft materials, which bring about entirely new functions and behaviors, similar in many ways to natural systems.
These Proceedings focus on four main topics:
• Soft Actuators and Control
• Soft Interactions
• Soft Robot Assistants: Potential and Challenges
• Human-centered »Soft Robotics«.

Preface 5
Contents 7
Part I Outline 9
1 Introduction 10
2 Abstracts 12
Part II Sensors and Actuators 24
3 New Concepts for Distributed Actuators and Their Control 25
3.1 Introduction 25
3.2 Shape Memory Alloys as Flexible Actuators 27
3.2.1 Basics 27
3.2.2 Control Design 29
3.2.3 Structural Integration 31
3.3 Control and Feedback Control of Distributed Actuators 34
3.4 Conclusions and Outlook 37
3.5 References 37
4 Artificial Muscles, Made of Dielectric Elastomer Actuators A Promising Solution for Inherently Compliant Future Robots 39
4.1 Drawbacks of Prevailing Robotic Actuators 39
4.2 Benefits of DEAs in Soft Robotics 41
4.2.1 Capability of Energy Recuperation 41
4.2.2 Intrinsic Compliance and Adaptability 42
4.2.3 Outstanding Power-to-Weight Ratio 42
4.2.4 Capability of Self-sensing 42
4.2.5 Noiseless Actuation 43
4.3 Current Research Efforts 43
4.3.1 Manufacturing Artificial Muscles Based on DEA 43
4.3.2 Lightweight Power Electronics 45
4.4 Summary and Future Challenges 46
4.5 References 46
5 Musculoskeletal Robots and Wearable Devices on the Basis of Cable-driven Actuators 48
5.1 Introduction 48
5.2 Short State of the Art: From Musculoskeletal Robots to Wearable Devices 49
5.3 The Myorobotics Toolkit 51
5.3.1 Overview 51
5.3.2 Design Primitives Library (DPL) 52
5.4 Wearable Cable-Driven Robots 54
5.4.1 Requirements and Structure of a Body Worn Lifting Aid 55
5.4.2 Body Worn Lifting Aid 56
5.5 References 57
6 Capacitive Tactile Proximity Sensing: From Signal Processing to Applications in Manipulation and Safe Human-Robot Interaction 60
6.1 Introduction 60
6.2 Signal Processing and Feature Extraction 61
6.2.1 Tracking 63
6.2.2 Task and Environment Contexts for Feature Extraction 63
6.3 Applications 65
6.3.1 Proximity Servoing 65
6.3.2 Preshaping 66
6.3.3 Combined Haptic and Proximity-Based Exploration 68
6.4 Conclusions and Future Work 68
6.5 References 70
Part III Modeling, Simulation and Control 72
7 Perception of Deformable Objects and Compliant Manipulation for Service Robots 73
7.1 Introduction 73
7.2 Compliant Control for Service Robots 74
7.2.1 Compliant Task-Space Control 75
7.2.2 Applications of Compliant Control in Everyday Environments 77
7.2.3 Public Demonstrations 79
7.3 Object Manipulation Skill Transfer 80
7.3.1 Efficient RGB-D Deformable Registration 80
7.3.2 Skill Transfer through Shape Matching 81
7.3.3 Results 82
7.4 Conclusions 83
7.5 References 83
8 Soft Robot Control with a Behaviour-Based Architecture 85
8.1 Introduction 85
8.2 The Behaviour-based Architecture iB2C 86
8.2.1 Design of Complex Behaviour Networks 88
8.2.2 Oscillation Detection in Behaviour Networks 89
8.2.3 Verification of Behaviour Networks 90
8.3 Soft Control with the iB2C 92
8.4 Conclusion and Future Work 93
8.5 References 94
9 Optimal Exploitation of Soft-Robot Dynamics 96
9.1 Introduction 96
9.2 Problem Formulation 97
9.3 Optimal Controls for Constrained Deflection 98
9.4 Experiments 101
9.5 Conclusion 102
9.6 References 102
10 Simulation Technology for Soft Robotics Applications 104
10.1 Introduction 104
10.2 State of the Art 105
10.2.1 Simulation in “Classical” Robotics 106
10.2.2 Simulation in Soft Robotics 107
10.3 The Basic Concepts of eRobotics 109
10.3.1 3D Simulation-Based Development 109
10.3.2 The Virtual Testbed Approach 109
10.4 Integrating Simulation Algorithms 112
10.4.1 Multi-Domain Modeling with Bond Graphs 113
10.4.2 Multi-Domain Modeling by Integrating Single-Domain Tools 114
10.5 Simulation of Actuated and Controlled Manipulators 115
10.5.1 Simulation of Compliant Robots 116
10.5.2 Generation of a Compliant Trajectory 116
10.5.3 Torque-Based Tracking of the Compliant Trajectory 117
10.5.4 Drive Train Modeling and Simulation 117
10.5.5 Torque Control 117
10.6 Applications 118
10.6.1 FESTO Bionic Handling Assistant 118
10.6.2 Soft Physical Human Robot Interaction 118
10.6.3 Terramechanics 120
10.7 Conclusions and Outlook 120
10.8 References 121
11 Concepts of Softness for Legged Locomotion and Their Assessment 124
11.1 Biomechanics of Legged Locomotion 124
11.2 Legged Locomotion in Robotics 126
11.3 Biomechanical Concepts for Legged Locomotion 128
11.4 Radial and Tangential Leg Function 129
11.5 Leg Segmentation and Multi-Joint Structures 131
11.6 From Biomechanical Concepts to Robots 131
11.7 Assessment of Locomotor Function in Biomechanics and Robotics 133
11.8 Outlook 134
11.9 References 135
12 Mechanics and Thermodynamics of Biological Muscle A Simple Model Approach 138
12.1 The Biological Muscle Drives the Animal Motion 138
12.2 The Biological Muscle’s Various Design Features 139
12.2.1 The Biological Muscle’s Passive Mechanic Characteristics 139
12.2.2 Active Muscle and Stability 141
12.2.3 Mechanical Efficiency and Thermodynamic Enthalpy Rate 143
12.3 Designing a Technical Actuator from the Biological Prototype 144
12.4 Next Generation of Bio-inspired and Bio-like Actuators 145
12.5 References 146
Part IV Materials, Design and Manufacturing 149
13 Nanostructured Materials for Soft Robotics – Sensors and Actuators 150
13.1 Introduction 150
13.2 Actuators 152
13.3 Touch Sensors 156
13.4 Conclusions and Perspectives 158
13.5 References 158
14 Fibrous Materials and Textiles for Soft Robotics 160
14.1 Introduction 160
14.2 Fibrous Materials: Properties and Architecture 161
14.3 Functionalization Made Possible by New Textile Processing Technologies 163
14.4 Light-Weight-Structures for Robots 166
14.5 Adaptive and Intelligent Structures 170
14.6 Soft Robot Surface Design and Surface Functionalization 174
14.7 Conclusion 175
15 Opportunities and Challenges for the Design of Inherently Safe Robots 176
15.1 Introduction 176
15.2 State of the Art in Soft Robotics 177
15.3 Design of Soft Robots with Variable Stiffness 178
15.4 Concepts 182
15.5 Summary and Outlook 184
15.6 References 184
16 Aspects of Human Engineering – Bio-optimized Design of Wearable Machines 187
16.1 Introduction 187
16.1.1 The Challenge 187
16.1.2 Prevalence 188
16.2 Designing a Wearable Robot: State of the Art 189
16.2.1 Different Types of Exoskeletons 189
16.2.2 Power and Drives 190
16.2.3 Detection of User Intention 191
16.2.4 Human Anatomy 193
16.3 Therapy and Rehabilitation 197
16.4 Physical Prevention and Force Assistance 197
16.5 Vision: Auxiliary Assistance 198
16.6 References 199
17 3D Printed Objects and Components Enabling Next Generation of True Soft Robotics 201
17.1 Introduction 201
17.1.1 Additive Manufacturing (AM) as a Manufacturing Technology forSoft-Robotic-Systems 202
17.1.2 The Production Processes 202
17.1.3 The Term Robot and its Newly Added Additive Components 203
17.1.4 Integrated Functional Components 203
17.1.5 Soft Actuator Systems 205
17.1.6 Fabrication of Soft Objects Including Endless Fibers 208
17.2 Discussion and Outlook 210
17.3 References 211
Part V Soft Robotic Applications 212
18 Soft Hands for Reliable Grasping Strategies 213
18.1 Introduction 213
18.2 Exploiting Constraints 214
18.3 Requirements to Hardware 216
18.4 PneuFlex Actuators 217
18.5 Anthropomorphic Soft Hand Prototype 218
18.6 Example Implementation of a Grasping Strategy 219
18.7 Used Interactions 220
18.8 Limitations 222
18.9 Discussion 222
18.10 References 223
19 Task-specific Design of Tubular Continuum Robots for Surgical Applications 224
19.1 Introduction 224
19.2 Continuum Robots with Tubular Structure 225
19.2.1 Kinematic Structure 225
19.2.2 Kinematic Modelling 225
19.2.3 Component Tube Parameters 226
19.3 Task-specific Design 226
19.3.1 Design Heuristics 227
19.4 Computational Design Optimization 228
19.5 Discussion and Outlook 230
19.6 References 231
20 Soft Robotics with Variable Stiffness Actuators: Tough Robots for Soft Human Robot Interaction 233
20.1 Introduction 233
20.2 Compliant Actuation 234
20.2.1 Floating Spring Joint (FSJ) 235
20.2.2 Flexible Antagonistic Spring Element (FAS) 236
20.2.3 Bidirectional Antagonism with Variable Stiffness (BAVS) 237
20.3 Electronics and System Architecture 238
20.4 Hand Design and Control 239
20.5 Modeling Soft Robots 241
20.6 Cartesian Stiffness Control 242
20.6.1 Cartesian Impedance Control 242
20.6.2 Independent Position and Stiffness Control 244
20.7 Optimal Control 246
20.8 Collision Detection and Reaction 247
20.8.1 Reactions 247
20.8.2 Reflexes 249
20.9 Cyclic Motion Control 250
20.10 Conclusion 252
20.11 References 252
21 Soft Robotics Research, Challenges, and Innovation Potential, Through Showcases 257
21.1 Introduction: The Need for Soft Robots 257
21.2 The Challenges for Soft Robotics, Through the Octopus Showcase 258
21.2.1 Biological Insights 258
21.2.2 Soft Actuation Technologies 260
21.2.3 Soft Robot Modeling and Control 260
21.2.4 Integration and Validation of an Octopus-like Robot 261
21.3 Soft Robots at Work 261
21.3.1 Biomedical Applications of Soft Robotics: Octopus-derived Technologies in Surgery 261
21.3.2 Soft Robots in Explorations: An Octopus-like Underwater Robot 262
21.3.3 Soft Grippers for Manufacturing 263
21.4 Conclusions 263
21.5 References 264
22 Flexible Robot for Laser Phonomicrosurgery 267
22.1 Introduction 267
22.2 Phonomicrosurgery 267
22.3 System Design 270
22.3.1 Design Specifications and Constraints 270
22.3.2 Flexible Sections, Actuation Unit, and Control 270
22.4 Results 271
22.5 Conclusions 272
22.6 References 272
23 Soft Components for Soft Robots 274
23.1 Introduction: What Kind of Softness? 274
23.2 Actuators for Soft Robots 275
23.2.1 Actuators for Multi-DoF Designs 275
23.2.2 Pneumatic Artificial Muscles (PAMs) 275
23.2.3 Smart Material-Based Actuators 276
23.3 Soft Sensors 277
23.3.1 Soft Geometry for “Hard” Conductor 277
23.3.2 Conductive Material 278
23.3.3 Discrete Sensors in Soft Matrix for Distributed Sensing 278
23.4 Conclusions 280
23.5 References 281
24 Soft Robotics for Bio-mimicry of Esophageal Swallowing 284
24.1 Introduction 284
24.2 Interdisciplinary Specifications 285
24.3 Actuator Design and Manufacture 286
24.4 Experimental Characterization 288
24.4.1 Manometry Method and Findings 289
24.4.2 Articulography Method and Findings 290
24.5 Discussion and Conclusion 292
24.6 References 292

Erscheint lt. Verlag 13.3.2015
Zusatzinfo VIII, 291 p. 100 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Technik Bauwesen
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Human-centered Soft Robotics • Robot Assistant • Safe Human-robot Interaction • Soft Actuators • Soft Control • Soft Interactions • Soft Robotics
ISBN-10 3-662-44506-9 / 3662445069
ISBN-13 978-3-662-44506-8 / 9783662445068
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Manufacturing Excellence in der Smart Factory

von Jürgen Kletti; Jürgen Rieger

eBook Download (2023)
Springer Vieweg (Verlag)
69,99