Polymer Nanoclay Composites -

Polymer Nanoclay Composites (eBook)

Stephan Laske (Herausgeber)

eBook Download: PDF | EPUB
2015 | 1. Auflage
194 Seiten
Elsevier Science (Verlag)
978-0-323-31272-1 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
108,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

There is a major lack of fundamental knowledge and understanding on the interaction between a filler and the polymer matrix. When it comes to nanoscale fillers, such as layered silicates, carbon nanotubes, graphene or cellulose nanofibers it is even more important to know accurate structure-property relationships as well as identifying the parameters influencing material behavior.

The reason for the lack of knowledge on how to process nanocomposites and why there are so few applications is that several scientific fields are affected and a joint effort of those scientific communities involved is necessary - starting from the filler manufacturing or pre-processing over polymer chemistry to the polymer processing.

In Polymer Nanoclay Composites, all involved scientific areas are viewed together for the first time, providing an all-embracing coverage of all stages of polymer clay nanocomposites processing from lab-scale to industrial scale - stages from the raw material over manufacturing of polymer clay nanocomposites to characterization and the final products.

Readers will gain insight in the physical/chemical pre-processing of layered silicates and their incorporation into a polymer matrix using sophisticated technologies (such as advanced compounding) as well as in real-time quality control of the nanocomposite production and future prospects. The book also describes nanotoxicological and nanosafety aspects.


  • Covers the whole processing route with all aspects of the nanocomposites industry with particular focus on the processing of polymer clay nanocomposites
  • Includes quality control and nanosafety
  • Multidisciplinary approach from an industrial perspective

There is a major lack of fundamental knowledge and understanding on the interaction between a filler and the polymer matrix. When it comes to nanoscale fillers, such as layered silicates, carbon nanotubes, graphene or cellulose nanofibers it is even more important to know accurate structure-property relationships as well as identifying the parameters influencing material behavior. The reason for the lack of knowledge on how to process nanocomposites and why there are so few applications is that several scientific fields are affected and a joint effort of those scientific communities involved is necessary - starting from the filler manufacturing or pre-processing over polymer chemistry to the polymer processing. In Polymer Nanoclay Composites, all involved scientific areas are viewed together for the first time, providing an all-embracing coverage of all stages of polymer clay nanocomposites processing from lab-scale to industrial scale - stages from the raw material over manufacturing of polymer clay nanocomposites to characterization and the final products. Readers will gain insight in the physical/chemical pre-processing of layered silicates and their incorporation into a polymer matrix using sophisticated technologies (such as advanced compounding) as well as in real-time quality control of the nanocomposite production and future prospects. The book also describes nanotoxicological and nanosafety aspects. Covers the whole processing route with all aspects of the nanocomposites industry with particular focus on the processing of polymer clay nanocomposites Includes quality control and nanosafety Multidisciplinary approach from an industrial perspective

Front Cover 1
Polymer Nanoclay Composites 4
Copyright Page 5
Contents 6
Introduction 10
Acknowledgments 12
References 12
1 Processing of calcium montmorillonites for use in polymers 14
1.1 Introduction 14
1.2 Definitions 18
1.3 Morphology of montmorillonite which is important for use in the polymer industry 18
1.4 Introduction—the activation of calcium bentonites to achieve a high aspect ratio 21
1.4.1 Problems in determining the soda ash dosage for the deposit-specific optimized cation exchange 22
1.4.2 Chemical–mineralogical basis of the alkaline activation of bentonites and technical problems in the realization 22
1.4.3 Thixotropy and yield point of bentonite suspensions 23
1.4.4 Definitions of a chemical and technical degree of activation 25
1.4.5 Activation technique 26
1.4.6 Determination of the yield point 29
1.5 Criteria for the selection of calcium bentonites, their alkaline activation, and the achievable aspect ratio 35
1.6 Conclusions 38
References 38
2 Chemical/physical preprocessing of nanoclay particles 40
2.1 Introduction—montmorillonite 41
2.2 Activation 42
2.2.1 Activation by acids 42
2.2.2 Characterization of activated MMT 44
2.2.2.1 EDX spectroscopy 44
2.2.2.2 FTIR spectroscopy 44
2.2.2.3 Thermogravimetric analysis 45
2.2.2.4 Medium angle X-ray scattering 46
2.3 Metal cation exchange 47
2.3.1 Metal-(II)-cations 47
2.3.2 Metal-(III)-cation 49
2.3.3 Characterization of metal cation–exchanged montmorillonite 50
2.3.3.1 EDX spectroscopy 50
2.3.3.2 FTIR spectroscopy 50
2.3.3.3 Thermogravimetry 52
2.4 Organomodification 52
2.4.1 Amino acid as modification reagent 53
2.4.2 Characterization of organomodified montmorrilonite 57
2.4.2.1 FTIR spectroscopy 57
2.4.2.2 Thermogravimetric analysis 57
2.4.2.3 MAXS measurements 60
2.5 Conclusions 61
References 62
3 Processing of polymer–nanoclay composites 66
3.1 Nanoclay Processing Basics 67
3.1.1 “Melt mixing” (compounding) 67
3.1.2 Characteristic process parameters 67
3.1.2.1 Residence time characteristics 67
3.1.2.2 Specific energy input 68
3.1.2.3 Case study: influence of induced shear energy on the properties of polyolefine nanocomposites [1] 69
3.1.2.3.1 Materials 69
3.1.2.3.2 Production of nanocomposites 69
3.1.2.3.3 Specimen 70
3.1.2.3.4 Tests 70
3.1.3 Calculation of the shear energy for extrusion and compounding 71
3.1.4 Calculation of the shear energy for injection molding 71
3.1.5 Visualization of nanoclay dispersion 72
3.1.6 Influence of shearing on Young’s modulus and breaking strain 72
3.1.7 Influence on internal pressure creep time and longitudinal shrinkage 75
3.1.8 Conclusions 76
3.2 Advanced compounding 77
3.2.1 Case study: extrusion of PP nanocomposites by advanced compounding [2] 77
3.2.1.1 Materials and methods 77
3.2.1.1.1 Materials 77
3.2.1.1.2 Process design 77
3.2.1.1.3 Extensional melt rheology 79
3.2.1.2 Results and discussion 80
3.3 Injection mold compounding 84
3.3.1 Case Study 86
3.3.1.1 Experimental 87
3.3.1.2 Results 89
3.4 Conclusions 102
References 103
4 Characterization of polymer nanocomposites based on layered silicates 106
4.1 Introduction 107
4.2 Offline characterization 107
4.2.1 Spectroscopic measurements 107
4.2.1.1 WAXS and TEM 107
4.2.1.2 Nuclear magnetic resonance 109
4.2.1.3 Infrared and Raman spectroscopy 109
4.2.2 Determination of physical properties 110
4.2.3 Rotational rheometry 111
4.2.4 Extensional rheometry 113
4.3 Inline And online characterization 114
4.3.1 Online extensional rheometry with the help of Rheotens equipment 114
4.3.2 Inline NIR investigations 117
4.3.2.1 Principal component analysis 119
4.3.2.2 Multiple linear regression 122
4.3.2.3 Principal component regression 122
4.3.2.4 Partial least squares 123
4.3.2.5 Diagnostic methods to assess the quality of the calculated model 124
4.3.2.6 Pretreatment methods 126
4.3.2.7 Mean centering 126
4.3.2.8 Variance scale 127
4.3.2.9 Path length correction 127
4.3.2.10 Smoothing and derivation 128
4.3.2.11 Baseline shift 129
4.3.2.12 Outliers 129
4.3.2.13 Euclidean distance 130
4.3.2.14 Mahalanobis distance 131
4.3.2.15 Outlier species and their potential effect on models 132
4.3.2.16 NIR works 132
4.4 Conclusions 135
References 135
5 Properties and applications of nanoclay composites 140
5.1 Introduction 140
5.2 Mechanical reinforcement capabilities of layered silicates 141
5.3 Effect of layered silicates on the rheological properties 144
5.4 The influence of layered silicates on barrier properties 146
5.5 The influence of layered silicates on tribology 149
5.6 Thermal conductivity of layered silicate polymer nanocomposites 150
5.7 Thermal stability of layered silicate polymer nanocomposites 151
5.8 Layered silicates for biodegradation application 153
5.9 Clays for drug delivery systems 155
5.10 Layered silicates as halogen-free FRs 156
5.10.1 Development of fire 156
5.10.2 Layered silicates as FR additives 161
5.11 Summary 162
References 163
6 Safety issues of silica nanomaterials in the frame of industrial use 170
6.1 Introduction 170
6.2 Safety assessment according to REACh and guidance 173
6.2.1 Exposure and toxicity assessment 173
6.2.1.1 Exposure routes 175
6.2.1.2 Safety data sheets 177
6.2.2 Standardization 177
6.3 Nano-silica use in applications 178
6.3.1 Workplace safety 179
6.3.2 Environmental safety on nano-silica 182
6.4 Conclusions 182
Acknowledgment 184
Abbreviations 184
References 185
Index 190

Introduction


Stephan Laske

Using (in)organic fillers in a polymer matrix has a long history in polymer science and engineering in order to achieve desired mechanical, rheological, chemical, or thermal properties [13]. There is ample (published) experience on which properties of the filler and the filler–matrix interface influence the compound [46], but still a major lack of fundamental knowledge and understanding exists on the interaction between the filler and the polymer matrix as well as on the mode of operation. When it comes to nanoscale fillers, such as layered silicates, carbon nanotubes, graphene, or cellulose nanofibers, it is even more important to know accurate structure–property relationships as well as identifying the influencing parameters, e.g., at the filler–matrix interface as structural arrangements on the molecular level influence the mechanical behavior at the macro level [714]. It has already been shown [15,16] that using nanofillers in polymer matrices poses a number of challenges, which includes the modification of the filler (e.g., ionic exchange reactions), the processing of the composite material (e.g., high residence time and shear rate needed simultaneously), or the material characterization (e.g., under mechanical loading). Previous results with layered silicates illustrated that for improved mechanical properties a highly intercalated structure and for enhanced barrier or flame retardancy a highly exfoliated structure is needed [17,18]. This example demonstrates the importance of structural arrangements on the molecular level for the mechanical behavior at the macroscale level and the need for the determination of accurate structure–property relationships as well as identifying the influencing parameters, e.g., at the filler–matrix interface [19,20].

These mentioned circumstances are the reasons for the complexity in processing polymer nanocomposites and why there are still only few applications. Furthermore, not only one scientific field is affected and joint efforts of several scientific communities are necessary. Starting from the filler manufacturing or preprocessing (e.g., the fiber manufacturers or the mineralogist who provides the raw material) over the polymer chemistry adding, e.g., the correct surface modification and functionalization, to the polymer processing using adequate techniques and processes for achieving flawless materials, every step in this chain is just a part of the puzzle.

Within this book for the first time, all involved scientific areas are working together providing an all-embracing look on processing of polymer nanocomposites bridging the gap from the raw material to the final composite. This book gives an impressive gain insight the physical/chemical preprocessing of layered silicates, their incorporation into a polymer matrix using sophisticated technologies (such as injection molding compounder or advanced compounding) as well as in-line, real-time quality control of nanocomposite production and prospects of nanocomposite materials. Finally, a nanotoxicological view on the new materials completes the book and covers all aspects of nanocomposite industry.

This book concentrates on one special class of nanofillers, which attracted both academic and commercial interest for several years due to their availability and costs, layered silicates. The main advantage of nanofillers is their high specific surface area which allows to achieve or exceed certain levels of specific properties with only a very small amount of filler compared to conventional fillers. Montmorillonite, hectorite, and saponite are the most commonly used layered silicates. Their crystal structure consists of layers made up of two tetrahedral coordinated silicon atoms fused to an edge-shared octahedral sheet of either aluminum or magnesium hydroxide. The layer thickness can be estimated with 1 nm. The other two dimensions vary from 30 nm to several microns or larger. Normally these layers form stacks, with a gap (due to van der Waals forces) between the single layers (see Chapter 1).

Two particular characteristics of layered silicates are helpful for satisfactory dispersion and forming of different structures (agglomerated, intercalated, and exfoliated) in the polymer matrix. On the one hand, the layered silicates have the ability to disperse into individual layers (swelling). On the other hand, the surface chemistry of the layered silicates can be changed via ion exchange reactions with organic and inorganic cations (see Chapter 2). The organomodified layered silicate can be incorporated inside the carrier polymer due to supportive thermodynamics, during the ultimate steps of processing, in methods such as extrusion (compounding) or injection molding, to generate nanocomposite materials. As mentioned before, layered silicate filled polymer nanocomposites are processable by most of the commonly used processing techniques in industrial scale (see Chapter 3).

During the process, the structures which are responsible for the level of reinforcement are formed by physical bonding between the hydrophilic clay, the hydrophobic polymer matrix, and if nonpolar polymers are used, a compatibilizer [21,22]. To characterize the homogeneity respectively the properties of the material, a variety of methods are used. These methods comprise offline as well as inline methods and outrun often the commonly used practice and interpretations for the specific needs of nanocomposite evaluation (see Chapter 4).

If implemented properly such polymer nanocomposite materials can display a property profile which exceeds that of conventional filled polymer systems in several ways. Such properties cover multiple aspects including strength, stiffness, thermal as well as oxidative stability, diffusion properties against gas molecules and flame retardancy [23,24]. This enhanced property profile, obtained only by the addition of comparably small amounts of silicate layers to the carrier polymer, is especially attractive for certain applications due to the fact that polymer layered silicates nanocomposites have a significantly improved weight to performance ratio [12,23,25,26] (see Chapter 5).

Another aspect that separates organomodified layered silicates as filler for polymers from conventional filler systems is indeed the significant reduction or absence of property trade-offs. Conventional polymer blends or composites implement the necessity to trade-off desired performance, mechanical properties (especially toughness and elongation properties), cost and processability. Polymer nanocomposites offer a passage to bypass these limitations of conventional polymer filler systems and thereby giving the opportunity to shape material properties without taking compromises in the cost of property trade-offs [23,24,27].

Especially for commodity matrix polymers such as polypropylene (PP) or polyethylene (PE), the addition of nanofillers offers great potential in improvement of certain properties, e.g., Young’s modulus and barrier properties simultaneously. Thereby the low cost of commodity plastics as well as their huge field of applications and the tuning of the final property profile with nanoscaled fillers offers tremendous opportunities in the application of such nanocomposites.

Besides the modification, processing, and application of nanocomposites, nanotoxicology is always a necessary and overall important topic. Regarding the environmental and human hazards, numerous potential exposure scenarios for nanofillers within polymers, e.g., during the manufacture and machining process or generated during usage/recycling for both workers and consumers need to be considered in comprehensive risk assessment (see Chapter 6).

Acknowledgments


The editor wants to thank all the authors for the contribution of their excellent and forward-looking work as well as their collaboration and effort for the “pit-to-part” idea. Furthermore, this book would not exist in this quality, if not many reviewers spent their rare time for revising the single chapter. At that point the editor wants to thank Dr. Hans Kolb, Dr. Joerg Schausberger, DI Tobias Struklec, Dr. Ivica Duretek, Ali Gooneie, Lis, and Dr. Lisa Bregoli.

June 2014

References


1. Suyev YuS. Reinforcement of polymers by finely dispersed fillers Review. Polym Sci U.S.S.R. 1979;21(6):1315–1333.

2. Mallick PK. Fiber-Reinforced Composites: Materials, Manufacturing, and Design third ed. Florida: CRC Press; 2007; ISBN-10: 0849342058, ISBN-13: 978-0849342059.

3. Shen L, Zhang ZY, Wang JJ, Li WC, Zheng Q. Polym Mater Sci Eng. 2006;22(4):107–109.

4. Katz HS, Mileski JV. Handbook of Fillers for Plastics first ed. Berlin: Springer; 1987; ISBN-10: 0442260245, ISBN-13: 978-0442260248.

5. Jancar J. Mineral Fillers in Thermoplastics I: Raw Materials and Processing. vol. 139 New York, LLC: Springer-Verlag; 1999; ISBN: 3540646213.

6. Wegner G. Acta Mater. 2000;48:253–262.

7. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes—the route toward applications. Science. 2002;297:787.

8. Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials. Nature. 2006;442 In: http://dx.doi.org/doi:10.2038/nature04969; 2006.

9. Ramanathan T, Abdala AA, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3 In:...

Erscheint lt. Verlag 9.1.2015
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-323-31272-1 / 0323312721
ISBN-13 978-0-323-31272-1 / 9780323312721
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 4,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Vieweg (Verlag)
119,99