Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 45a (eBook)

Monocyclic Arenes, Quasiarenes, and Annulenes

Jay S. Siegel, Yoshito Tobe (Herausgeber)

eBook Download: EPUB
2014 | 1. Auflage
545 Seiten
Thieme (Verlag)
978-3-13-178431-5 (ISBN)

Lese- und Medienproben

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations  Vol. 45a -
Systemvoraussetzungen
2.589,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'> <HTML><HEAD> <META content='text/html; charset=unicode' http-equiv=Content-Type> <META name=GENERATOR content='MSHTML 8.00.7600.16588'></HEAD> <BODY> <P><EM>Science of Synthesis: Houben-Weyl Methods of Molecular Transformations</EM> is the entirely new edition of the acclaimed reference series Houben-Weyl, the standard synthetic chemistry resource since 1909. This new edition is published in English and will comprise 48 volumes published between the years 2000 and 2008.</P> <P><EM>Science of Synthesis</EM> is a quality reference work developed by a highly esteemed editorial board to provide a comprehensive and critical selection of reliable organic and organometallic synthetic methods. This unique resource is designed to be the first point of reference when searching for a synthesis strategy.</P> <UL><LI>Contains the expertise of presently 400 leading chemists worldwide <LI>Critically evaluates the preparative applicability and significance of the synthetic methods <LI>Discusses relevant background information and provides detailed experimental procedures</LI></UL> <P>For full information on the <EM>Science of Synthesis</EM> series, visit the <A href='http://www.science-of-synthesis.com/'>Science of Synthesis Homepage</A></P></BODY></HTML>

Science of Synthesis – Volume 45a: Monocyclic Arenes, Quasiarenes, and Annulenes 1
Title page 3
Imprint 5
Preface 6
Overview 8
Table of Contents 10
Introduction 26
45.1 Product Class 1: Cyclopropenium Salts, Cyclopropenones and Heteroatom Analogues, and Cyclopropenyl Radicals and Anions 36
45.1.1 Product Subclass 1: Cyclopropenium Salts 37
45.1.1.1 Synthesis of Product Subclass 1 37
45.1.1.1.1 Method 1: Synthesis from Cyclopropenes 37
45.1.1.1.1.1 Variation 1: Hydride Abstraction 37
45.1.1.1.1.2 Variation 2: Protonation 38
45.1.1.1.1.3 Variation 3: Halide Abstraction 39
45.1.1.1.2 Method 2: Synthesis from Halocyclopropanes 42
45.1.1.1.3 Method 3: Synthesis from Cyclopropenones or Their Heteroatom Analogues 42
45.1.1.1.3.1 Variation 1: O-Alkylation and Related Processes 42
45.1.1.1.3.2 Variation 2: Protonation 43
45.1.1.1.3.3 Variation 3: Formation of Dications 44
45.1.1.1.4 Method 4: Transformations of Other Cyclopropenium Salts 45
45.1.1.1.4.1 Variation 1: Friedel--Crafts-Type Reactions 45
45.1.1.1.4.2 Variation 2: Substitution 46
45.1.1.2 Applications of Product Subclass 1 in Organic Synthesis 49
45.1.1.2.1 Method 1: Synthesis of Cyclopropenes 49
45.1.1.2.2 Method 2: Synthesis of Cyclic Compounds 51
45.1.1.2.3 Method 3: Synthesis of Acyclic Compounds 53
45.1.2 Product Subclass 2: Cyclopropenones and Their Heteroatom Analogues 56
45.1.2.1 Synthesis of Product Subclass 2 56
45.1.2.1.1 Method 1: Synthesis from Cyclopropenium Salts 56
45.1.2.2 Applications of Product Subclass 2 in Organic Synthesis 60
45.1.2.2.1 Method 1: Synthesis of Heterocyclic Systems 60
45.1.2.2.1.1 Variation 1: Nitrogen Heterocycles 60
45.1.2.2.1.2 Variation 2: Oxygen Heterocycles 65
45.1.2.2.2 Method 2: Synthesis of Carbocycles 67
45.1.3 Product Subclass 3: Cyclopropenyl Radicals 69
45.1.3.1 Synthesis of Product Subclass 3 69
45.1.4 Product Subclass 4: Cyclopropenyl Anions 69
45.1.4.1 Synthesis of Product Subclass 4 69
45.2 Product Class 2: Cyclobutadienes, Cyclobutenediones, and Squaric Acids 74
45.2.1 Product Subclass 1: Cyclobutadienes 74
45.2.1.1 Synthesis of Product Subclass 1 82
45.2.1.1.1 Method 1: Synthesis by Cycloreversion 82
45.2.1.1.2 Method 2: Synthesis by Decomposition of Cyclopropenyl Diazomethanes 85
45.2.1.1.3 Method 3: Synthesis from Metal--Cyclobutadiene Complexes 87
45.2.1.1.3.1 Variation 1: Using Iron Complexes 87
45.2.1.1.3.2 Variation 2: Using Other Metal Complexes 90
45.2.1.1.4 Method 4: Other Methods 91
45.2.2 Product Subclass 2: Cyclobutenediones 93
45.2.2.1 Synthesis of Product Subclass 2 94
45.2.2.1.1 Method 1: Synthesis from Alkynes 94
45.2.2.1.1.1 Variation 1: By Cycloaddition Reactions 94
45.2.2.1.1.2 Variation 2: Using Transition-Metal Complexes 96
45.2.2.1.2 Method 2: Synthesis from Alkenes 98
45.2.2.1.3 Method 3: Synthesis from Other Cyclobutenediones 100
45.2.2.1.3.1 Variation 1: Friedel--Crafts Reaction of Halocyclobutenediones 100
45.2.2.1.3.2 Variation 2: Reaction of Squaric Acid Derivatives and Carbon Nucleophiles 102
45.2.2.1.3.3 Variation 3: Transition-Metal-Catalyzed Cross-Coupling Reactions 105
45.2.2.1.4 Method 4: Other Methods 107
45.2.3 Product Subclass 3: Squaric Acids and Derivatives 108
45.2.3.1 Synthesis of Product Subclass 3 111
45.2.3.1.1 Method 1: Synthesis of Squaric Acids from Polyhalocyclobutenes and Related Reactions 111
45.2.3.1.2 Method 2: Synthesis of Squarate Esters from Squaric Acids 113
45.2.3.1.3 Method 3: Synthesis via Transesterification and Related Reactions 115
45.2.3.1.4 Method 4: Other Methods 116
45.2.4 Product Subclass 4: Sulfur Analogues of Squaric Acid and Related Compounds 116
45.2.4.1 Synthesis of Product Subclass 4 120
45.2.4.1.1 Method 1: Synthesis from Squarate Esters and Sulfur Nucleophiles, and Related Reactions 120
45.2.4.1.2 Method 2: Synthesis by Alkylation of Thiosquarate Anions 123
45.2.4.1.3 Method 3: Other Methods 124
45.3 Product Class 3: Cyclopentadienyl Anions, Cyclopentadienones, and Heteroatom Analogues 134
45.3.1 Product Subclass 1: Cyclopentadienyl Anions 135
45.3.1.1 Synthesis of Product Subclass 1 135
45.3.1.1.1 Method 1: Direct Deprotonation 135
45.3.1.1.1.1 Variation 1: Using Alkyllithium Reagents 135
45.3.1.1.1.2 Variation 2: Using Metal Hydrides 138
45.3.1.1.1.3 Variation 3: Using Elemental Alkaline Metals 140
45.3.1.1.1.4 Variation 4: Using Alkali Metal Amides 141
45.3.1.1.2 Method 2: Metal Exchange 142
45.3.1.1.3 Method 3: Synthesis from Pentafulvenes 143
45.3.1.1.4 Method 4: Synthesis from Spirocyclopentadienes 147
45.3.1.2 Applications of Product Subclass 1 in Organic Synthesis 148
45.3.1.2.1 Method 1: Synthesis of Metallocenes and Metal Complexes 148
45.3.1.2.2 Method 2: Synthesis of Functionalized Cyclopentadienides 148
45.3.1.2.3 Method 3: Synthesis of Substituted Cyclopentadienes and Indenes 150
45.3.1.2.3.1 Variation 1: Alkylation Reactions 150
45.3.1.2.3.2 Variation 2: Nucleophilic Addition to Carbonyl Compounds 151
45.3.2 Product Subclass 2: Cyclopentadienones and Heteroatom Analogues 154
45.3.2.1 Synthesis of Product Subclass 2 154
45.3.2.1.1 Method 1: Synthesis from Dicarbonyl Compounds 154
45.3.2.1.2 Method 2: Synthesis from Alkynes 158
45.3.2.1.2.1 Variation 1: Insertion of Carbon Monoxide 158
45.3.2.1.2.2 Variation 2: Reaction with Cyclopropenones 160
45.3.2.1.2.3 Variation 3: Reaction with Isocyanates or Isothiocyanates 162
45.3.2.1.3 Method 3: Synthesis from 1,3-Diene-1,4-diyldilithium Compounds 163
45.3.2.1.4 Method 4: Synthesis from Cyclopentenones and Related Compounds 165
45.3.2.1.5 Method 5: Ring-Contraction Methods 166
45.3.2.2 Applications of Product Subclass 2 in Organic Synthesis 168
45.3.2.2.1 Method 1: Formation of Metal Complexes 168
45.3.2.2.2 Method 2: Synthesis of Functionalized Cyclopentadienes 168
45.3.2.2.3 Method 3: Synthesis of Fused Systems 170
45.3.2.2.3.1 Variation 1: Polyaromatic Compounds 170
45.3.2.2.3.2 Variation 2: Polycyclic Compounds 172
45.4 Product Class 4: Benzene and Alkylbenzenes 182
45.4.1 Product Subclass 1: Benzene 182
45.4.1.1 Synthesis of Product Subclass 1 182
45.4.1.1.1 Method 1: Thermal Aromatization of Acetylene 182
45.4.1.1.1.1 Variation 1: Metal-Catalyzed Aromatization of Acetylene 182
45.4.1.1.2 Method 2: Metal-Catalyzed Aromatization of Alkanes 183
45.4.1.1.2.1 Variation 1: Metal-Catalyzed Aromatization of Alcohols 183
45.4.1.1.3 Method 3: Metal-Catalyzed Aromatization of Cycloalkanes 183
45.4.1.1.3.1 Variation 1: Aromatization of Cycloalkenes Using Sonication 183
45.4.2 Product Subclass 2: Monoalkylbenzenes 184
45.4.2.1 Synthesis of Product Subclass 2 184
45.4.2.1.1 Method 1: Friedel--Crafts Alkylation of Arenes 184
45.4.2.1.1.1 Variation 1: Lewis Acid Catalyzed Friedel--Crafts Alkylation of Arenes with Alkyl Halides 184
45.4.2.1.1.2 Variation 2: Brønsted Acid or Base Catalyzed Friedel--Crafts Alkylation of Arenes with Alkyl Halides 186
45.4.2.1.1.3 Variation 3: Photochemical Friedel--Crafts Alkylation of Arenes with Alkyl Halides 186
45.4.2.1.1.4 Variation 4: Friedel--Crafts Alkylation of Arenes with Alcohols 187
45.4.2.1.1.5 Variation 5: Friedel--Crafts Alkylation of Arenes with Alkenes 190
45.4.2.1.1.6 Variation 6: Via Tandem Lewis Acid Catalyzed Halogenation and Friedel--Crafts Alkylation of Alkenes 191
45.4.2.1.1.7 Variation 7: Friedel--Crafts Alkylation of Arenes with Epoxides 191
45.4.2.1.1.8 Variation 8: Friedel--Crafts Alkylation of Arenes with Aldehydes 193
45.4.2.1.1.9 Variation 9: Friedel--Crafts Alkylation of Arenes with Alkyl Methanesulfonates or Trifluoromethanesulfonates 195
45.4.2.1.1.10 Variation 10: Lewis Acid Catalyzed Friedel--Crafts Alkylation of Arenes with .-Alkenyl Silyl Ethers 197
45.4.2.1.1.11 Variation 11: Lewis Acid Catalyzed Friedel--Crafts Alkylation of Arenes with Allylic Acetates 197
45.4.2.1.2 Method 2: Alkylation of Arenes via Cross Coupling of Arenes to Benzyl Ethers 198
45.4.2.1.3 Method 3: Alkylarenes via a Tandem Alkylation--Hydride Reduction Sequence 198
45.4.2.1.3.1 Variation 1: Via Palladium-Catalyzed C--H Activation of Arenes and Coupling with Alkylstannanes 199
45.4.2.1.4 Method 4: Alkylation of Arenes via Suzuki Reaction of Alkylboranes and Related Alkylboron Reagents with Aryl Halides 200
45.4.2.1.4.1 Variation 1: Via Nickel-Catalyzed Cross Coupling 202
45.4.2.1.4.2 Variation 2: Via Organocuprate Coupling to Aryl Trifluoromethanesulfonates 202
45.4.2.1.4.3 Variation 3: Via Kumada-Type Cross Coupling 203
45.4.2.1.4.4 Variation 4: Via Negishi-Type Cross-Coupling Reactions 205
45.4.2.1.4.5 Variation 5: Via Stille-Type Cross-Coupling Reactions 206
45.4.2.1.4.6 Variation 6: Via Hiyama-Type Cross-Coupling Reactions 207
45.4.2.1.5 Method 5: Alkylation of Benzenes through an SNAr Mechanism 208
45.4.2.1.6 Method 6: Alkylation of Benzyl Bromides Using Organocuprates in the Presence of Trialkylboranes 208
45.4.2.1.7 Method 7: Reduction of Alkyl Aryl Ketones Using Hydrazine and a Base under Wolff--Kishner Conditions 209
45.4.2.1.7.1 Variation 1: Microwave Heating under Classic Wolff--Kishner Conditions 210
45.4.2.1.7.2 Variation 2: Wolff--Kishner Reduction of N-(tert-Butyldimethylsilyl)hydrazones 210
45.4.2.1.7.3 Variation 3: Using Tosylhydrazones and Alkylboranes 212
45.4.2.1.7.4 Variation 4: Reduction Using Zinc--Hydrochloric Acid under Clemmensen Conditions 212
45.4.2.1.7.5 Variation 5: Using Phenylphosphines 212
45.4.2.1.7.6 Variation 6: Using Trialkyl Phosphites 213
45.4.2.1.7.7 Variation 7: Using Organosilanes 213
45.4.2.1.7.8 Variation 8: Using Metal Aluminum or Boron Hydrides and a Second Co-reductant 214
45.4.2.1.7.9 Variation 9: Using Selenium under an Atmosphere of Carbon Monoxide 217
45.4.2.1.7.10 Variation 10: Using Hydrogen Gas in the Presence of a Metal Catalyst 217
45.4.2.1.7.11 Variation 11: Using Water or Alcohols as Hydrogen Sources for Reduction in the Presence of a Metal Catalyst 218
45.4.2.1.7.12 Variation 12: Via Tandem Thioketal Formation and Metal Reduction 219
45.4.2.1.7.13 Variation 13: Using Palladium/Carbon as a Catalyst 220
45.4.3 Product Subclass 3: Polyalkylbenzenes 220
45.4.3.1 Synthesis of Product Subclass 3 220
45.4.3.1.1 Method 1: Polyalkylbenzenes via a Directed Carbopalladation Reaction 220
45.4.3.1.2 Method 2: [2 + 2 + 2] Transition-Metal-Catalyzed Cyclotrimerization of Alkynes 220
45.4.3.1.3 Method 3: Nickel-Catalyzed Synthesis of Polyalkylated Phenols 223
45.4.3.1.4 Method 4: [4 + 2] Cyclization of Alkynes with Enynes 223
45.4.3.1.5 Method 5: Tandem Sonogashira--[4 + 2] Benzannulation Protocol of Alkynes with Vinyl Bromides 228
45.4.3.1.6 Method 6: Alkene Metathesis 228
45.5 Product Class 5: Styrenes, Stilbenes, and Other Alk-1-enylbenzenes 234
45.5.1 Synthesis of Product Class 5 234
45.5.1.1 Alkenation of Aldehydes 234
45.5.1.1.1 Method 1: Wittig-Type Reactions 235
45.5.1.1.1.1 Variation 1: The Wittig Reaction 235
45.5.1.1.1.2 Variation 2: The Horner--Wittig Reaction 237
45.5.1.1.1.3 Variation 3: The Horner--Wadsworth--Emmons Reaction 239
45.5.1.1.2 Method 2: The Peterson Reaction 240
45.5.1.1.3 Method 3: The Julia Reaction 241
45.5.1.1.4 Method 4: The Perkin Reaction 242
45.5.1.1.5 Method 5: The Modified Julia Reaction 243
45.5.1.1.6 Method 6: The McMurry Reaction 245
45.5.1.2 Elimination Reactions 246
45.5.1.2.1 Method 1: Elimination of Alcohols 246
45.5.1.2.2 Method 2: Elimination of Alkyl Halides 247
45.5.1.2.3 Method 3: Elimination of 1,2-Dibromides 248
45.5.1.3 Reduction of Alkynes 249
45.5.1.3.1 Method 1: Partial Catalytic Hydrogenation of Alkynes 249
45.5.1.4 Alkene Cross-Metathesis Reactions 251
45.5.1.4.1 Method 1: Using Molybdenum and Ruthenium Carbene Complexes 251
45.5.1.5 Palladium-Catalyzed Cross-Coupling Reactions 252
45.5.1.5.1 Method 1: The Mizoroki--Heck Reaction 252
45.5.1.5.1.1 Variation 1: Aryl Halides as Electrophiles 253
45.5.1.5.1.2 Variation 2: Arenediazonium Salts as Electrophiles 257
45.5.1.5.1.3 Variation 3: Decarbonylative Heck Reaction 259
45.5.1.5.1.4 Variation 4: Desulfonylative Heck Reaction 261
45.5.1.5.2 Method 2: The Suzuki--Miyaura Reaction 262
45.5.1.5.3 Method 3: The Hiyama Reaction 264
45.5.1.5.4 Method 4: The Kosugi--Migita--Stille Reaction 265
45.5.1.5.5 Method 5: The Negishi Reaction 267
45.5.1.5.6 Method 6: The Kumada--Tamao--Corriu Reaction 268
45.5.1.5.7 Method 7: Organoindium Cross-Coupling Reactions 269
45.6 Product Class 6: Annulated Benzenes (1H-Cyclopropabenzenes, 1,2-Dihydrocyclobutabenzenes, Indanes, and Indenes) 278
45.6.1 Product Subclass 1: 1H-Cyclopropabenzenes 278
45.6.1.1 Synthesis of Product Subclass 1 278
45.6.1.1.1 Method 1: Photolysis of 3H-Pyrazoles 278
45.6.1.1.2 Method 2: Aromatization Reactions 279
45.6.1.1.3 Method 3: Synthesis from Other Cyclopropabenzenes 280
45.6.1.1.4 Method 4: Direct Formation of the Cyclopropane Ring 282
45.6.1.1.5 Method 5: Synthesis of Silicon, Germanium, and Boron Analogues of Cyclopropabenzene 283
45.6.1.2 Applications of Product Subclass 1 in Organic Synthesis 284
45.6.1.2.1 Method 1: Synthesis of Carbon-Containing Aromatic Compounds 284
45.6.1.2.2 Method 2: Synthesis of Heterocyclic Compounds 286
45.6.2 Product Subclass 2: 1,2-Dihydrocyclobutabenzenes 288
45.6.2.1 Synthesis of Product Subclass 2 288
45.6.2.1.1 Method 1: Synthesis from Cycloproparenes 288
45.6.2.1.2 Method 2: Synthesis from 2H-Pyran-2-ones 289
45.6.2.1.3 Method 3: Photochemical Reactions 290
45.6.2.1.4 Method 4: Synthesis from Benzyne Derivatives 292
45.6.2.1.5 Method 5: Other Annulation Reactions 295
45.6.2.1.6 Method 6: Synthesis from Metallocyclopentadienes 303
45.6.2.2 Applications of Product Subclass 2 in Organic Synthesis 305
45.6.2.2.1 Method 1: Synthesis of Aromatic Compounds 305
45.6.2.2.1.1 Variation 1: Synthesis of Substituted Benzenes 305
45.6.2.2.1.2 Variation 2: Synthesis of Condensed Systems 305
45.6.2.2.2 Method 2: Synthesis of Heterocyclic Compounds 310
45.6.2.2.3 Method 3: Synthesis of Steroid Derivatives 312
45.6.3 Product Subclass 3: Indanes 314
45.6.3.1 Synthesis of Product Subclass 3 314
45.6.3.1.1 Method 1: Friedel--Crafts Cyclization 314
45.6.3.1.2 Method 2: Nazarov Cyclizations 316
45.6.3.1.3 Method 3: Metal-Mediated Cyclization Reactions 317
45.6.3.1.3.1 Variation 1: Palladium-Catalyzed Cyclization (Heck Reaction) 317
45.6.3.1.3.2 Variation 2: Rhodium-Catalyzed Cyclization 321
45.6.3.1.4 Method 4: Electrochemical Cyclization 324
45.6.3.1.5 Method 5: Ring-Contraction Reactions 325
45.6.3.1.6 Method 6: Multicomponent Reactions 327
45.6.3.1.7 Method 7: Cycloaddition Reactions 329
45.6.3.2 Applications of Product Subclass 3 in Organic Synthesis 330
45.6.3.2.1 Method 1: Indanes as Ligands in Organometallic Complexes 330
45.6.3.2.2 Method 2: Synthesis of Heterocyclic Systems 331
45.6.4 Product Subclass 4: Indenes 332
45.6.4.1 Synthesis of Product Subclass 4 332
45.6.4.1.1 Method 1: Friedel--Crafts Annulations 332
45.6.4.1.2 Method 2: Metal-Catalyzed Annulation Reactions 336
45.6.4.1.2.1 Variation 1: Palladium-Catalyzed Annulation 336
45.6.4.1.2.2 Variation 2: Nickel-Catalyzed Annulation 339
45.6.4.1.2.3 Variation 3: Ruthenium-Catalyzed Annulation 340
45.6.4.1.2.4 Variation 4: Rhodium-Catalyzed Annulation 341
45.6.4.1.2.5 Variation 5: Rhenium-Catalyzed Annulation 343
45.6.4.1.2.6 Variation 6: Cobalt-Catalyzed Annulation 343
45.6.4.1.2.7 Variation 7: Gold-Catalyzed Annulation 344
45.6.4.1.2.8 Variation 8: Platinum-Catalyzed Annulation 345
45.6.4.2 Applications of Product Subclass 4 in Organic Synthesis 345
45.6.4.2.1 Method 1: Synthesis of Fused Indanes and Related Compounds 345
45.6.4.2.2 Method 2: Synthesis of Heterocyclic Systems 346
45.7 Product Class 7: Cycloheptatrienylium (Tropylium) Salts, Tropones, Tropolones, and Heteroatom Analogues 354
45.7.1 Product Subclass 1: Cycloheptatrienylium (Tropylium) Salts 355
45.7.1.1 Synthesis of Product Subclass 1 355
45.7.1.1.1 Method 1: Ring Enlargement of Benzene Derivatives 355
45.7.1.1.2 Method 2: Aryl-Substituted Tropylium Ions by Arylation of the Parent Ion 357
45.7.1.1.3 Method 3: Oxidation of Cycloheptatrienes with Nitrosyl Tetrafluoroborate 358
45.7.1.1.4 Method 4: Tropylium Salts by Alkylation of Tropones and Tropothiones 359
45.7.1.1.5 Method 5: Formation of Silatropylium Ions 360
45.7.1.1.6 Method 6: Formation of Azatropylium (Azepinium) Ions 361
45.7.2 Product Subclass 2: Tropones 362
45.7.2.1 Synthesis of Product Subclass 2 362
45.7.2.1.1 Syntheses by [6 + 1] Combinations 362
45.7.2.1.1.1 Method 1: Synthesis from Phenols by Dihalocarbene Addition 362
45.7.2.1.1.1.1 Variation 1: Reduction of (Dihalomethyl)cyclohexadienones with Polymer-Bound Dibutyltin Hydride 364
45.7.2.1.1.2 Method 2: Annulated Tropones by Intramolecular Oxidative Coupling of Phenols 366
45.7.2.1.1.3 Method 3: 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone Oxidation of Spirocyclic Naphthalen-2-ones 367
45.7.2.1.1.4 Method 4: Synthesis from Dihalocarbene Adducts of Cyclohexadienes 367
45.7.2.1.1.4.1 Variation 1: Chlorocarbene Addition to Silyl Enol Ethers 368
45.7.2.1.1.5 Method 5: Tropones via Halotropylium Ions as Reactive Intermediates 369
45.7.2.1.1.6 Method 6: Tropones from [4 + 2] Cycloaddition of Benzo-1,2-quinones and Arylalkynes 371
45.7.2.1.2 Syntheses by [5 + 2] Combinations 372
45.7.2.1.2.1 Method 1: cine Substitution of exo-7-Chlorobicyclo[3.2.0]hept-2-en-6-one 373
45.7.2.1.2.2 Method 2: Light-Induced Synthesis of 3- and 4-Alkyltropones 374
45.7.2.1.3 Syntheses by [4 + 3] Combinations 375
45.7.2.1.3.1 Method 1: Rearrangement of 8-Oxabicyclo[3.2.1]oct-6-en-3-ones with Trimethylsilyl Trifluoromethanesulfonate and Triethylamine 375
45.7.2.1.3.1.1 Variation 1: Cycloaddition of Furans and 1,1,3,3-Tetrachloro-2-oxidopropenylium Cation 376
45.7.2.1.3.1.2 Variation 2: 2,7-Dichlorotropones from [3 + 4] Cycloaddition of Buta-1,3-dienes and 1,1,3,3-Tetrachloro-2-oxidopropenylium Cation 378
45.7.2.1.3.2 Method 2: 3-Aminotropones from an N-tert-Butoxycarbonyl-Protected Furan-2-amine 379
45.7.2.1.3.3 Method 3: Cyclopropanation of Buta-1,3-diene with Ethyl 3-Diazopyruvate 380
45.7.2.1.3.4 Method 4: Cyclopropanation of Buta-1,3-dienes with Vinylcarbenes Followed by Cope Rearrangement 381
45.7.2.1.3.5 Method 5: [4 + 2] Cycloadditions with 4,8-Dioxaspiro[2.5]oct-1-ene 384
45.7.2.1.3.6 Method 6: Reaction of Functionalized Buta-1,3-dienes and Tetrachlorocyclopropene 386
45.7.2.1.4 Heteroanologues of Tropones 386
45.7.2.1.4.1 Method 1: Oxidation of a 3H-Azepine 387
45.7.3 Product Subclass 3: Tropolones 388
45.7.3.1 Synthesis of Product Subclass 3 389
45.7.3.1.1 Syntheses by [6 + 1] Combinations 389
45.7.3.1.1.1 Method 1: Rearrangement of 7-Halobicyclo[4.1.0]heptanediones 389
45.7.3.1.1.2 Method 2: Photooxygenation of Ethyl 4,5-Dioxymethylenecyclohepta-2,4,6-trienecarboxylate 391
45.7.3.1.1.3 Method 3: ß-Tropolones from o-Quinones and Triphenylbismuthonium 2-Oxoalkalides 392
45.7.3.1.1.4 Method 4: ß-Tropolones from o-Quinones and 2-Methylquinolines 393
45.7.3.1.2 Syntheses by [5 + 2] Combinations 394
45.7.3.1.2.1 Method 1: Base-Catalyzed Rearrangement of 7,7-Dichloro-4-isopropylidenebicyclo[3.2.0]hept-2-en-6-ones 394
45.7.3.1.2.2 Method 2: Best Route to .-Tropolone 395
45.7.3.1.2.3 Method 3: Pyrylium 3-Oxides as a New Tool for a-Tropolone Synthesis 396
45.7.3.1.3 Syntheses by [4 + 3] Combinations 397
45.7.3.1.3.1 Method 1: Cyclopropanation of 2-Methoxy-Substituted Buta-1,3-diene Ketals 397
45.7.3.1.3.1.1 Variation 1: ß-Tropolone Methyl Ethers from Cyclopropanation of 3-Methoxy-Substituted Buta-1,3-diene Ketals 398
45.7.3.1.3.2 Method 2: [3 + 4] Cycloaddition of a Methoxy-2-oxidopropenylium Cation with Furans 399
45.7.3.1.3.3 Method 3: a-Tropolones by Hydroxylation of 8-Oxabicyclo[3.2.1]oct-6-en-3-ones 400
45.7.3.1.3.4 Method 4: ß-Tropolone Formation on Basic Cleavage of 2,2-Dimethoxy-8-oxabicyclo[3.2.1]oct-6-en-3-ones 401
45.7.3.1.4 Heteroanalogues of Tropolones 402
45.8 Product Class 8: Cyclooctatetraenes 408
45.8.1 Synthesis of Product Subclass 8 409
45.8.1.1 Method 1: Cyclization of Octatetraenes 409
45.8.1.2 Method 2: Copper-Mediated Cyclotetramerization of Ethenes 409
45.8.1.3 Method 3: Metal-Mediated Cyclodimerization of Butadienes 410
45.8.1.3.1 Variation 1: Copper-Mediated Homocoupling 410
45.8.1.3.2 Variation 2: Copper-Mediated Cross Coupling 412
45.8.1.3.3 Variation 3: Nickel-Mediated Homocoupling 413
45.8.1.3.4 Variation 4: Nickel-Mediated Cross Coupling 413
45.8.1.4 Method 4: Reduction of Cyclooctadienes and Cyclooctatrienes Followed by Oxidation of the Resultant Dianion 414
45.8.1.5 Method 5: Dehydrohalogenation of Annulated Cyclooctatrienes and Cyclooctadienes 415
45.8.1.6 Method 6: Removal of Acidic Protons 416
45.8.1.7 Method 7: Decarbonylation and Decarboxylation 416
45.8.1.8 Method 8: Wittig Reaction 418
45.8.1.9 Method 9: Extrusion of Oxygen 418
45.8.1.10 Method 10: Extrusion of Sulfur Dioxide 418
45.8.1.11 Method 11: Nickel-Catalyzed Cyclotetramerization of Alkynes 419
45.8.1.12 Method 12: Isomerization of Cyclooctatetraene Valence Isomers 421
45.8.1.12.1 Variation 1: Isomerization of Bicyclo[4.2.0]octatrienes 421
45.8.1.12.2 Variation 2: Isomerization of Tricyclo[4.2.0.02,5]octa-3,7-dienes 423
45.8.1.12.3 Variation 3: Isomerization of Semibullvalenes 423
45.8.1.12.4 Variation 4: Isomerization of Cubanes 424
45.8.1.12.5 Variation 5: Photolysis of Barrelene 424
45.8.1.13 Method 13: Base-Catalyzed Rearrangement of Cycloocta-1,5-diyne 424
45.8.1.14 Method 14: Ring Expansion by Carbene Rearrangement 425
45.8.1.15 Method 15: Synthesis with Retention of the Cyclooctatetraene Ring by Halogenation of Cyclooctatetraene 425
45.8.1.16 Method 16: Synthesis with Retention of the Cyclooctatetraene Ring by Functionalization of Bromocyclooctatetraene 426
45.8.1.16.1 Variation 1: Metalation Reactions 426
45.8.1.16.2 Variation 2: Dehydrobromination Reactions 427
45.8.1.16.3 Variation 3: Cross-Coupling Reactions 428
45.9 Product Class 9: Nine-Membered and Higher Annulenes and Related Ions 432
45.9.1 Product Subclass 1: Annulenes and Related Ions 432
45.9.1.1 Synthesis of Product Subclass 1 432
45.9.1.1.1 Method 1: Halogenation Followed by Dehydrohalogenation 432
45.9.1.1.2 Method 2: Corey--Winter Alkene Synthesis 433
45.9.1.1.3 Method 3: Wittig Reaction 434
45.9.1.1.4 Method 4: McMurry Coupling 434
45.9.1.1.5 Method 5: Reductive Elimination of Chlorine 435
45.9.1.1.6 Method 6: Hydrogenation of Dehydroannulenes 435
45.9.1.1.7 Method 7: Valence Isomerization 437
45.9.1.1.8 Method 8: Reductive Methylation of Octalene Dianion 439
45.9.1.1.9 Method 9: Prototropic Rearrangement 439
45.9.1.1.10 Method 10: Substitution of Annulene Rings 440
45.9.2 Product Subclass 2: Methano[n]annulenes and Related Ions 441
45.9.2.1 Synthesis of Product Subclass 2 441
45.9.2.1.1 Method 1: Electrocyclization Followed by Dehydrohalogenation 441
45.9.2.1.2 Method 2: Dehydrogenation of Dihydro- or Tetrahydro[n]annulenes and Tetrahydropyrenes 441
45.9.2.1.3 Method 3: Dihydropyrenes by Elimination of Dimethyl Sulfide 442
45.9.2.1.4 Method 4: Dehydration of Allylic Alcohols 443
45.9.2.1.5 Method 5: Elimination of Methanol 443
45.9.2.1.6 Method 6: Dehydrohalogenation 443
45.9.2.1.7 Method 7: Sulfur Elimination 444
45.9.2.1.8 Method 8: McMurry Coupling 444
45.9.2.1.9 Method 9: Diels--Alder Reactions of Cyclopropabenzene 445
45.9.2.1.10 Method 10: Cycloaddition of Acetylene Followed by C--C Bond Cleavage 445
45.9.2.1.11 Method 11: Reductive Addition to Dienones 446
45.9.2.1.12 Method 12: Electrophilic Substitution of Annulene Rings 446
45.9.2.1.13 Method 13: Substitution via Organometallic Species 447
45.9.2.1.14 Method 14: Decarbonylation of Dialdehydes 448
45.9.2.1.15 Method 15: Functionalization of Annulenes via Annulynes 448
45.9.2.1.16 Method 16: Functionalization of Annulenes via Homocoupling 449
45.9.2.1.17 Method 17: Functionalization via Cross Coupling 449
45.10 Product Class 10: Fulvenes 454
45.10.1 Product Subclass 1: Triafulvenes 455
45.10.1.1 Synthesis of Product Subclass 1 455
45.10.1.1.1 Method 1: Synthesis from Cyclopropenones 455
45.10.1.1.1.1 Variation 1: Condensation Reactions with Active Methylene Compounds Initiated by Acetic Anhydride 455
45.10.1.1.1.2 Variation 2: Wittig and Peterson Alkenation Reactions 456
45.10.1.1.1.3 Variation 3: Condensation Reactions with Ketenes 457
45.10.1.1.1.4 Variation 4: Reaction of Cyclopropenethione with Tetracyanoethene Oxide 457
45.10.1.1.2 Method 2: Synthesis from Cyclopropenylium Salts 458
45.10.1.1.2.1 Variation 1: Proton Abstraction from Substituted Cyclopropenylium Salts 458
45.10.1.1.2.2 Variation 2: Reaction of Heterosubstituted Cyclopropenylium Salts with Active Methylene Compounds 459
45.10.1.1.3 Method 3: Synthesis from Substituted Methylenecyclopropanes by Elimination 460
45.10.1.1.4 Method 4: Carbene Reactions of Cyclopropenylidenes 461
45.10.1.1.5 Method 5: Synthesis of Benzotriafulvenes by Peterson Alkenation 462
45.10.2 Product Subclass 2: Triafulvalenes 463
45.10.2.1 Synthesis of Product Subclass 2 463
45.10.2.1.1 Method 1: Synthesis of Dibenzotriafulvalenes by Carbene Dimerization 463
45.10.2.1.2 Method 2: Synthesis of Naphthotriafulvalenes by Peterson Alkenation 464
45.10.3 Product Subclass 3: Pentatriafulvalenes 464
45.10.3.1 Synthesis of Product Subclass 3 465
45.10.3.1.1 Method 1: Synthesis from Cyclopropenones 465
45.10.3.1.1.1 Variation 1: Condensation Reactions with Cyclopentadiene Derivatives Initiated by Acetic Anhydride 465
45.10.3.1.1.2 Variation 2: Condensation Reactions with Substituted Cyclopentadienes 466
45.10.3.1.2 Method 2: Synthesis from Cyclopropenylium Salts 466
45.10.3.1.2.1 Variation 1: Proton Abstraction from Substituted Cyclopropenylium Salts 466
45.10.3.1.2.2 Variation 2: Condensation Reactions of Heterosubstituted Cyclopropenylium Salts 467
45.10.3.1.3 Method 3: Condensation Reactions of Dichlorocyclopropene Derivatives 469
45.10.3.1.4 Method 4: Synthesis of Benzopentatriafulvalenes by Peterson Alkenation 469
45.10.4 Product Subclass 4: Heptatriafulvalenes 470
45.10.4.1 Synthesis of Product Subclass 4 470
45.10.4.1.1 Method 1: Synthesis of Benzoheptatriafulvalenes by Peterson Alkenation 470
45.10.5 Product Subclass 5: Pentafulvenes 470
45.10.5.1 Synthesis of Product Subclass 5 471
45.10.5.1.1 Method 1: Reactions of Cyclopentadienes with Aldehydes or Ketones 471
45.10.5.1.1.1 Variation 1: Condensation Reactions Initiated by Strong Bases 471
45.10.5.1.1.2 Variation 2: Condensation Reactions Initiated by Secondary Amines 472
45.10.5.1.1.3 Variation 3: Condensation Reactions of Cyclopentadienide Ions with Ketones 473
45.10.5.1.2 Method 2: Reactions of Sodium Cyclopentadienide with 1-Haloalkyl Acetates 474
45.10.5.1.3 Method 3: Reactions of Cyclopentadienes with Carboxylic Acid Derivatives 475
45.10.5.1.3.1 Variation 1: Reaction with a Vilsmeier Reagent 475
45.10.5.1.3.2 Variation 2: Condensation Reactions with O-Alkylated Amides 475
45.10.5.1.3.3 Variation 3: Condensation Reactions with S-Alkylated Thioamides 476
45.10.5.1.3.4 Variation 4: Condensation Reactions with Iminium Salts 477
45.10.5.1.4 Method 4: Reactions of Cyclopentadienes with Triheteromethyl Cations 478
45.10.5.1.4.1 Variation 1: Condensation Reactions with O-Alkylated Urea Derivatives 478
45.10.5.1.4.2 Variation 2: Condensation Reactions with S-Methylated Thiourea Derivatives 478
45.10.5.1.5 Method 5: Metal-Catalyzed Cyclization Reactions 479
45.10.5.1.5.1 Variation 1: Trimerization of Alkynes 479
45.10.5.1.5.2 Variation 2: Cyclization Reactions of Alkynes and Vinyl Halides 479
45.10.6 Product Subclass 6: Pentafulvalenes 480
45.10.6.1 Synthesis of Product Subclass 6 480
45.10.6.1.1 Method 1: Oxidative Coupling of Cyclopentadienides 480
45.10.6.1.2 Method 2: Synthesis from Cyclopentadienones 481
45.10.6.1.2.1 Variation 1: Condensation Reactions with Cyclopentadienides 482
45.10.6.1.2.2 Variation 2: Peterson Alkenation 483
45.10.6.1.3 Method 3: Reductive Coupling of 5,5-Dihalocyclopentadienes 483
45.10.7 Product Subclass 7: Heptapentafulvalenes 484
45.10.7.1 Synthesis of Product Subclass 7 484
45.10.7.1.1 Method 1: Reactions of Cyclopentadienides with Tropylium Salts 484
45.10.7.1.1.1 Variation 1: Coupling of Cyclopentadienides with Tropylium Salts 485
45.10.7.1.1.2 Variation 2: Reactions of Cyclopentadienides with Acetoxytropylium Salts 485
45.10.7.1.2 Method 2: Reactions of Cyclopentadienes with Tropones 486
45.10.7.1.3 Method 3: Synthesis from Cycloheptatrienylpentafulvenes by Hydrogen Migration 487
45.10.8 Product Subclass 8: Heptafulvenes 487
45.10.8.1 Synthesis of Product Subclass 8 488
45.10.8.1.1 Method 1: Synthesis from Tropones 488
45.10.8.1.1.1 Variation 1: Condensation Reactions with Active Methylene Compounds Initiated by Acetic Anhydride 488
45.10.8.1.1.2 Variation 2: Reaction with Grignard Reagents 489
45.10.8.1.1.3 Variation 3: Condensation Reactions with Ketenes 490
45.10.8.1.1.4 Variation 4: Reaction of Cycloheptatrienethiones with Tetracyanoethene 491
45.10.8.1.2 Method 2: Synthesis from Tropylium Salts 491
45.10.8.1.2.1 Variation 1: Proton Abstraction from Alkyl-Substituted Tropylium Salts 491
45.10.8.1.2.2 Variation 2: Condensation Reactions with Active Methylene Compounds 493
45.10.8.1.2.3 Variation 3: Reactions with Bromomalononitrile 494
45.10.8.1.3 Method 3: Synthesis from Heterosubstituted Tropylium Salts 494
45.10.8.1.3.1 Variation 1: Reaction of an Alkoxytropylium Salt with an Active Methylene Compound 494
45.10.8.1.3.2 Variation 2: Reaction of an Acetoxytropylium Salt with a Lithium Reagent 495
45.10.8.1.4 Method 4: Enolization of Acylcycloheptatrienes 495
45.10.8.1.5 Method 5: Synthesis by Hofmann Elimination 496
45.10.8.1.6 Method 6: Synthesis from Heptafulvenone 497
45.10.8.1.6.1 Variation 1: Reactions of Heptafulvenone with Carbonyl Compounds 497
45.10.8.1.6.2 Variation 2: Reactions of Heptafulvenone with Thioketones 498
45.10.9 Product Subclass 9: Heptafulvalenes 498
45.10.9.1 Synthesis of Product Subclass 9 499
45.10.9.1.1 Method 1: Dimerization of Cycloheptatrienylidenes 499
45.10.9.1.1.1 Variation 1: Heptafulvalenes from the Sodium Salts of Tropone Tosylhydrazones 499
45.10.9.1.1.2 Variation 2: Dehydrochlorination of Chlorocycloheptatrienes 500
45.10.9.1.1.3 Variation 3: Rearrangement of Phenylcarbenes 500
45.10.9.1.2 Method 2: Reductive Coupling of 7,7-Dichlorocycloheptatrienes 501
45.10.9.1.3 Method 3: Reactions of Heptafulvenone with Tropone Derivatives 502
45.11 Product Class 11: Dimethylenecyclobutenes and Quinodimethanes 508
45.11.1 Product Subclass 1: Dimethylenecyclobutenes 508
45.11.1.1 Synthesis of Product Subclass 1 509
45.11.1.1.1 Method 1: [3,3]-Sigmatropic Rearrangements and Electrocyclic Reactions 509
45.11.1.1.1.1 Variation 1: Thermolysis of Hexa-1,5-diynes 509
45.11.1.1.1.2 Variation 2: Thermolysis of Substituted Diallenes 510
45.11.1.1.1.3 Variation 3: Dimerization of Species Generated In Situ from Propenes, Propadienes, or Propynes 510
45.11.1.1.2 Method 2: Synthesis from Cyclobutenes 512
45.11.1.1.2.1 Variation 1: By the Formation of exo-Double Bonds via Hofmann Elimination 512
45.11.1.1.2.2 Variation 2: By Wittig Reaction 512
45.11.1.1.2.3 Variation 3: By Dehydrochlorination 513
45.11.1.1.2.4 Variation 4: By Substitution of Carbanionic Species Generated from 1,2-Dimethyl-3,4-dimethylenecyclobutene 513
45.11.2 Product Subclass 2: Quinodimethanes 514
45.11.2.1 Synthesis of Product Subclass 2 515
45.11.2.1.1 Method 1: o-Quinodimethanes by Thermal Reactions 515
45.11.2.1.1.1 Variation 1: Ring Opening of Benzannulated Cyclobutenes 515
45.11.2.1.1.2 Variation 2: Elimination of Sulfur Dioxide from Sulfones 518
45.11.2.1.1.3 Variation 3: Elimination of Sulfur Dioxide from Sultines 519
45.11.2.1.1.4 Variation 4: Elimination of Carbon Dioxide from 5,8-Dihydro-7H-1,3-dioxolo[4,5-g][2]benzopyran-7-one 519
45.11.2.1.1.5 Variation 5: Elimination of Hydrogen Chloride from 1-Methyl-2-(trichloromethyl)benzenes 519
45.11.2.1.2 Method 2: o-Quinodimethanes by 1,4-Elimination Reactions of 1,2-Dialkylbenzenes Containing Leaving Groups Bonded to the Alkyl Substituents 520
45.11.2.1.2.1 Variation 1: Using Metals as Reducing Agents 520
45.11.2.1.2.2 Variation 2: Anion-Induced 1,4-Eliminations 521
45.11.2.1.2.3 Variation 3: Hofmann Elimination of N,N,N-Trimethyl(10-methyl-9-phenanthryl)methanaminium Chloride 523
45.11.2.1.2.4 Variation 4: Proton-Induced 1,4-Eliminations 524
45.11.2.1.3 Method 3: o-Quinodimethanes by Addition/Elimination Reactions 524
45.11.2.1.4 Method 4: o-Quinodimethanes by Photochemical Reactions 525
45.11.2.1.4.1 Variation 1: Photochemically Induced 1,5-Shifts 525
45.11.2.1.4.2 Variation 2: Photochemically Induced Eliminations 526
45.11.2.1.5 Method 5: o-Quinodimethanes by Cathodic Reduction and Anodic Oxidation of 1,2-Dialkylbenzenes 527
45.11.2.1.6 Method 6: o-Quinodimethanes by Palladium(0)/Samarium(II) Iodide Induced Intramolecular Cyclization 528
45.11.2.1.7 Method 7: p-Quinodimethanes by Pyrolysis of 1,4-Dialkylbenzenes and Their Derivatives 528
45.11.2.1.8 Method 8: p-Quinodimethanes by Methylenation of Naphtho-1,4-quinone or Anthra-9,10-quinone 529
45.12 Product Class 12: Radialenes 532
45.12.1 Product Subclass 1: [3]Radialenes 533
45.12.1.1 Synthesis of Product Subclass 1 533
45.12.1.1.1 Method 1: Synthesis by Substitution Reactions 533
45.12.1.1.1.1 Variation 1: Aromatic Substitution Reactions 533
45.12.1.1.1.2 Variation 2: Nucleophilic Substitution Reactions 537
45.12.1.1.2 Method 2: Synthesis by Elimination Reactions 540
45.12.1.1.2.1 Variation 1: E2 Elimination of Hydrogen Halides 540
45.12.1.1.2.2 Variation 2: Elimination of Trimethylamine (Hofmann Elimination) 541
45.12.1.1.3 Method 3: Synthesis by Addition Reactions 541
45.12.1.1.3.1 Variation 1: Addition of Methylenecarbenes 541
45.12.1.1.3.2 Variation 2: Addition and Oligomerization of Transition Metal Carbenoids 542
45.12.1.1.4 Method 4: Synthesis by Cyclization Reactions 543
45.12.1.1.4.1 Variation 1: Synthesis by Ring Closure with Transition Metals 544
45.12.2 Product Subclass 2: [4]Radialenes 544
45.12.2.1 Synthesis of Product Subclass 2 544
45.12.2.1.1 Method 1: Synthesis by Elimination Reactions 544
45.12.2.1.1.1 Variation 1: E2 Elimination of Hydrogen Halides and Pyrolysis of Hofmann Bases 545
45.12.2.1.1.2 Variation 2: 1,4-Dehalogenation, Reductive Dehydroxylation, and Retro-Diels--Alder Reaction 547
45.12.2.1.2 Method 2: Synthesis by Dimerization Reactions 548
45.12.2.1.2.1 Variation 1: Thermal and Photochemical Dimerization Reactions 549
45.12.2.1.2.2 Variation 2: Transition-Metal-Mediated Dimerization and Oligomerization Reactions 552
45.12.3 Product Subclass 3: [5]Radialenes 561
45.12.3.1 Synthesis of Product Subclass 3 561
45.12.3.1.1 Method 1: Transition-Metal-Mediated Oligomerization Reactions 561
45.12.3.1.2 Method 2: Addition--Elimination Reactions of [5]Radialenones 562
45.12.4 Product Subclass 4: [6]Radialenes 564
45.12.4.1 Synthesis of Product Subclass 4 564
45.12.4.1.1 Method 1: Synthesis by Reductive Elimination Reactions 564
45.12.4.1.2 Method 2: Synthesis by Elimination or Isomerization Reactions at High Temperature 565
45.12.4.1.3 Method 3: Transition-Metal-Mediated Oligomerization Reactions 566
45.12.5 Product Subclass 5: Expanded Radialenes 567
45.12.5.1 Synthesis of Product Subclass 5 567
Keyword Index 572
Author Index 604
Abbreviations 632

Erscheint lt. Verlag 14.5.2014
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Annulenes • anthracene • benzene • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • compounds with all-carbon functions • Mechanism • methods in organic synthesis • methods peptide synthesis • monocyclic arenes • naphthalene • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Practical • practical organic chemistry • Pyrene • Quasiarenes • Reactions • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation
ISBN-10 3-13-178431-8 / 3131784318
ISBN-13 978-3-13-178431-5 / 9783131784315
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 23,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich