Finite Fields - Dirk Hachenberger

Finite Fields

Normal Bases and Completely Free Elements
Buch | Softcover
171 Seiten
2012 | Softcover reprint of the original 1st ed. 1997
Springer-Verlag New York Inc.
978-1-4613-7877-8 (ISBN)
160,49 inkl. MwSt
Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed­ ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo­ rem, a classical result from field theory, stating that in every finite dimen­ sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor­ mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory.

I. Introduction and Outline.- 1. The Normal Basis Theorem.- 2. A Strengthening of the Normal Basis Theorem.- 3. Preliminaries on Finite Fields.- 4. A Reduction Theorem.- 5. Particular Extensions of Prime Power Degree.- 6. An Outline.- II. Module Structures in Finite Fields.- 7. On Modules over Principal Ideal Domains.- 8. Cyclic Galois Extensions.- 9. Algorithms for Determining Free Elements.- 10. Cyclotomic Polynomials.- III. Simultaneous Module Structures.- 11. Subgroups Respecting Various Module Structures.- 12. Decompositions Respecting Various Module Structures.- 13. Extensions of Prime Power Degree (1).- IV. The Existence of Completely Free Elements.- 14. The Two-Field-Problem.- 15. Admissability.- 16. Extendability.- 17. Extensions of Prime Power Degree (2).- V. A Decomposition Theory.- 18. Suitable Polynomials.- 19. Decompositions of Completely Free Elements.- 20. Regular Extensions.- 21. Enumeration.- VI. Explicit Constructions.- 22. Strongly Regular Extensions.- 23. Exceptional Cases.- 24. Constructions in Regular Extensions.- 25. Product Constructions.- 26. Iterative Constructions.- 27. Polynomial Constructions.- References.- List of Symbols.

Erscheint lt. Verlag 8.10.2012
Reihe/Serie The Springer International Series in Engineering and Computer Science ; 390
Zusatzinfo XII, 171 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Logik / Mengenlehre
Technik Elektrotechnik / Energietechnik
ISBN-10 1-4613-7877-X / 146137877X
ISBN-13 978-1-4613-7877-8 / 9781461378778
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00