Convexity and Optimization in Rn (eBook)
280 Seiten
Wiley (Verlag)
978-0-471-46166-1 (ISBN)
LEONARD D. BERKOVITZ, PhD, is Professor of Mathematics at Purdue University. He previously worked at the RAND Corporation and has served on the editorial boards of several journals, including terms as Managing Editor of the SIAM Journal on Control and as a member of the Editorial Committee of Mathematical Reviews.
Preface.
I: Topics in Real Analysis.
1. Introduction.
2. Vectors in R".
3. Algebra of Sets.
4. Metric Topology of R".
5. Limits and Continuity.
6. Basic Propertyof Real Numbers.
7. Compactness.
8. Equivalent Norms and Cartesian Products.
9. Fundamental Existence Theorem.
10. Linear Transformations.
11. Differentiation in R".
II: Convex Sets in R".
1. Lines and Hyperplanes in R".
2. Properties of Convex Sets.
3. Separation Theorems.
4. Supporting Hyperplanes:Extreme Points.
5. Systems of Linear Inequalities:Theorems of the Alternative.
6. Affine Geometry.
7. More on Separation and Support.
III: Convex Functions.
1. Definition and Elementary Properties.
2. Subgradients.
3. Differentiable Convex Functions.
4. Alternative Theorems for Convex Functions.
5. Application to Game Theory.
IV: Optimization Problems.
1. Introduction.
2. Differentiable Unconstrained Problems.
3. Optimization of Convex Functions.
4. Linear Programming Problems.
5. First-Order Conditions for Differentiable NonlinearProgrammingProblems.
6. Second-Order Conditions.
V: Convex Programming and Duality.
1. Problem Statement.
2. Necessary Conditions and Sufficient Conditions.
3. Perturbation Theory.
4. Lagrangian Duality.
5. Geometric Interpretation.
6. Quadratic Programming.
7. Dualityin Linear Programming.
VI: Simplex Method.
1. Introduction.
2. Extreme Points of Feasible Set.
3. Preliminaries to Simplex Method.
4. Phase II of Simplex Method.
5. Termination and Cycling.
6. Phase I of Simplex Method.
7. Revised Simplex Method.
Bibliography.
Index.
"...a nice introduction to finite-dimensional optimization..."(Zentralblatt Math, Vol.991, No.16, 2002)
"A textbook for a one-semester...course for students ofengineering, economics, operations research, and mathematics."(SciTech Book News, Vol. 26, No. 2, June 2002)
"...a fine introductory textbook that provides a solid introductionto the subject as well as a good foundation for further study..."(Mathematical Reviews, 2003a)
Erscheint lt. Verlag | 14.4.2003 |
---|---|
Reihe/Serie | Wiley Series in Pure and Applied Mathematics | Wiley Series in Pure and Applied Mathematics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik | |
Schlagworte | Mathematics • Mathematics Special Topics • Mathematik • Optimierung • Optimization • Spezialthemen Mathematik |
ISBN-10 | 0-471-46166-0 / 0471461660 |
ISBN-13 | 978-0-471-46166-1 / 9780471461661 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,6 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich