Convexity and Optimization in Rn - Leonard D. Berkovitz

Convexity and Optimization in Rn

Buch | Hardcover
280 Seiten
2002
Wiley-Interscience (Verlag)
978-0-471-35281-5 (ISBN)
201,11 inkl. MwSt
This book presents the mathematics of finite dimensional constrained optimization problems. It offers a solid presentation of real analysis and provides a basis for the mathematical study of convexity, of more general optimization problems, and of numerical algorithms for the solution of finite dimensional optimization problems.
A comprehensive introduction to convexity and optimization inRn

This book presents the mathematics of finite dimensionalconstrained optimization problems. It provides a basis for thefurther mathematical study of convexity, of more generaloptimization problems, and of numerical algorithms for the solutionof finite dimensional optimization problems. For readers who do nothave the requisite background in real analysis, the author providesa chapter covering this material. The text features abundantexercises and problems designed to lead the reader to a fundamentalunderstanding of the material.

Convexity and Optimization in Rn provides detailed discussionof:
* Requisite topics in real analysis
* Convex sets
* Convex functions
* Optimization problems
* Convex programming and duality
* The simplex method

A detailed bibliography is included for further study and an indexoffers quick reference. Suitable as a text for both graduate andundergraduate students in mathematics and engineering, thisaccessible text is written from extensively class-tested notes.

LEONARD D. BERKOVITZ, PhD, is Professor of Mathematics at Purdue University. He previously worked at the RAND Corporation and has served on the editorial boards of several journals, including terms as Managing Editor of the SIAM Journal on Control and as a member of the Editorial Committee of Mathematical Reviews.

Preface.

I: Topics in Real Analysis.

1. Introduction.

2. Vectors in R".

3. Algebra of Sets.

4. Metric Topology of R".

5. Limits and Continuity.

6. Basic Propertyof Real Numbers.

7. Compactness.

8. Equivalent Norms and Cartesian Products.

9. Fundamental Existence Theorem.

10. Linear Transformations.

11. Differentiation in R".

II: Convex Sets in R".

1. Lines and Hyperplanes in R".

2. Properties of Convex Sets.

3. Separation Theorems.

4. Supporting Hyperplanes:Extreme Points.

5. Systems of Linear Inequalities:Theorems of the Alternative.

6. Affine Geometry.

7. More on Separation and Support.

III: Convex Functions.

1. Definition and Elementary Properties.

2. Subgradients.

3. Differentiable Convex Functions.

4. Alternative Theorems for Convex Functions.

5. Application to Game Theory.

IV: Optimization Problems.

1. Introduction.

2. Differentiable Unconstrained Problems.

3. Optimization of Convex Functions.

4. Linear Programming Problems.

5. First-Order Conditions for Differentiable NonlinearProgrammingProblems.

6. Second-Order Conditions.

V: Convex Programming and Duality.

1. Problem Statement.

2. Necessary Conditions and Sufficient Conditions.

3. Perturbation Theory.

4. Lagrangian Duality.

5. Geometric Interpretation.

6. Quadratic Programming.

7. Dualityin Linear Programming.

VI: Simplex Method.

1. Introduction.

2. Extreme Points of Feasible Set.

3. Preliminaries to Simplex Method.

4. Phase II of Simplex Method.

5. Termination and Cycling.

6. Phase I of Simplex Method.

7. Revised Simplex Method.

Bibliography.

Index.

Erscheint lt. Verlag 29.1.2002
Reihe/Serie Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts
Zusatzinfo Graphs: 21 B&W, 0 Color
Sprache englisch
Maße 161 x 240 mm
Gewicht 599 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
ISBN-10 0-471-35281-0 / 0471352810
ISBN-13 978-0-471-35281-5 / 9780471352815
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95