Markov Random Field Modeling in Image Analysis (eBook)

(Autor)

eBook Download: PDF
2009 | 3rd ed. 2009
XXII, 362 Seiten
Springer London (Verlag)
978-1-84800-279-1 (ISBN)

Lese- und Medienproben

Markov Random Field Modeling in Image Analysis - Stan Z. Li
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.


Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.

Foreword by Anil K. Jain 7
Foreword by Rama Chellappa 9
Preface to the Third Edition 11
Preface to the Second Edition 12
Preface to the First Edition 13
Contents 15
Introduction 20
1.1 Labeling for Image Analysis 22
1.2 Optimization-Based Approach 27
1.3 The MAP-MRF Framework 32
1.4 Validation of Modeling 37
Mathematical MRF Models 40
2.1 Markov Random Fields and Gibbs Distributions 40
2.2 Auto-models 49
2.3 Multi-level Logistic Model 51
2.4 The Smoothness Prior 53
2.5 Hierarchical GRF Model 56
2.6 The FRAME Model 56
2.7 Multiresolution MRF Modeling 59
2.8 Conditional Random Fields 62
2.9 Discriminative Random Fields 63
2.10 Strong MRF Model 64
2.11 K-MRF and Nakagami-MRF Models 65
2.12 Graphical Models: MRF’s versus Bayesian Networks 66
Low-Level MRF Models 68
3.1 Observation Models 69
3.2 Image Restoration and Reconstruction 70
3.3 Edge Detection 79
3.4 Texture Synthesis and Analysis 84
3.5 Optical Flow 90
3.6 Stereo Vision 93
3.7 Spatio-temporal Models 95
3.8 Bayesian Deformable Models 97
High-Level MRF Models 110
4.1 Matching under Relational Constraints 110
4.2 Feature-Based Matching 117
4.3 Optimal Matching to Multiple Overlapping Objects 132
4.4 Pose Computation 140
4.5 Face Detection and Recognition 146
Discontinuities in MRF’s 148
5.1 Smoothness, Regularization, and Discontinuities 149
5.2 The Discontinuity Adaptive MRF Model 155
5.3 Total Variation Models 165
5.4 Modeling Roof Discontinuities 170
5.5 Experimental Results 175
MRF Model with Robust Statistics 179
6.1 The DA Prior and Robust Statistics 180
6.2 Experimental Comparison 191
MRF Parameter Estimation 200
7.1 Supervised Estimation with Labeled Data 201
7.2 Unsupervised Estimation with Unlabeled Data 216
7.3 Estimating the Number of MRF’s 227
7.4 Reduction of Nonzero Parameters 230
Parameter Estimation in Optimal Object Recognition 232
8.1 Motivation 232
8.2 Theory of Parameter Estimation for Recognition 234
8.3 Application in MRF Object Recognition 245
8.4 Experiments 251
8.5 Conclusion 258
Minimization – Local Methods 259
9.1 Problem Categorization 259
9.2 Classical Minimization with Continuous Labels 262
9.3 Minimization with Discrete Labels 263
9.4 Constrained Minimization 278
9.5 Augmented Lagrange-Hopfield Method 283
Minimization – Global Methods 288
10.1 Simulated Annealing 289
10.2 Mean Field Annealing 291
10.3 Graduated Nonconvexity 294
10.4 Graph Cuts 300
10.5 Genetic Algorithms 304
10.6 Experimental Comparisons 312
10.7 Accelerating Computation 325
References 330
List of Notation 366
Index 368

Erscheint lt. Verlag 3.4.2009
Reihe/Serie Advances in Computer Vision and Pattern Recognition
Advances in Computer Vision and Pattern Recognition
Zusatzinfo XXII, 362 p. 111 illus.
Verlagsort London
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Bayesian modeling • Bayesian Network • classification • Cognition • computer vision • Computer vison • Image Analysis • Image Processing • learning • markov random field • Modeling • Object recognition • Optimization • Stereo • Textur
ISBN-10 1-84800-279-3 / 1848002793
ISBN-13 978-1-84800-279-1 / 9781848002791
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
43,19
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
32,39