Mathematical Logic

Buch | Hardcover
291 Seiten
1994 | 2nd ed. 1994
Springer-Verlag New York Inc.
978-0-387-94258-2 (ISBN)

Lese- und Medienproben

Mathematical Logic - H.-D. Ebbinghaus, J. Flum, Wolfgang Thomas
64,15 inkl. MwSt
Studibuch Logo

...gebraucht verfügbar!

What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathe­ matical proofs? Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Godel's completeness theorem, which shows that the con­ sequence relation coincides with formal provability: By means of a calcu­ lus consisting of simple formal inference rules, one can obtain all conse­ quences of a given axiom system (and in particular, imitate all mathemat­ ical proofs). A short digression into model theory will help us to analyze the expres­ sive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this difficulty can be overcome--even in the framework of first-order logic-by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner.

A.- I Introduction.- II Syntax of First-Order Languages.- III Semantics of First-Order Languages.- IV A Sequent Calculus.- V The Completeness Theorem.- VI The Löwenheim-Skolem and the Compactness Theorem.- VII The Scope of First-Order Logic.- VIII Syntactic Interpretations and Normal Forms.- B.- IX Extensions of First-Order Logic.- X Limitations of the Formal Method.- XI Free Models and Logic Programming.- XII An Algebraic Characterization of Elementary Equivalence.- XIII Lindström’s Theorems.- References.- Symbol Index.

Reihe/Serie Undergraduate Texts in Mathematics
Zusatzinfo X, 291 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Logik / Mengenlehre
Sozialwissenschaften Pädagogik
ISBN-10 0-387-94258-0 / 0387942580
ISBN-13 978-0-387-94258-2 / 9780387942582
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich