Matrix-Based Introduction to Multivariate Data Analysis

(Autor)

Buch | Hardcover
301 Seiten
2016 | 1st ed. 2016
Springer Verlag, Singapore
978-981-10-2340-8 (ISBN)

Lese- und Medienproben

Matrix-Based Introduction to Multivariate Data Analysis - Kohei Adachi
85,59 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on singular value decomposition among theorems in matrix algebra. The book begins with an explanation of fundamental matrix operations and the matrix expressions of elementary statistics, followed by the introduction of popular multivariate procedures with advancing levels of matrix algebra chapter by chapter. This organization of the book allows readers without knowledge of matrices to deepen their understanding of multivariate data analysis.

Kohei Adachi, Graduate School of Human Sciences, Osaka University

Part 1. Elementary Statistics with Matrices.- 1 Introduction to Matrix Operations.- 2 Intra-variable Statistics.- 3 Inter-variable Statistics.- Part 2. Least Squares Procedures.- 4 Regression Analysis.- 5 Principal Component Analysis (Part 1).- 6 Principal Component Analysis 2 (Part 2).- 7 Cluster Analysis.- Part 3. Maximum Likelihood Procedures.- 8 Maximum Likelihood and Normal Distributions.- 9 Path Analysis.- 10 Confirmatory Factor Analysis.- 11 Structural Equation Modeling.- 12 Exploratory Factor Analysis.- Part 4. Miscellaneous Procedures.- 13 Rotation Techniques.- 14 Canonical Correlation and Multiple Correspondence Analyses.- 15 Discriminant Analysis.- 16 Multidimensional Scaling.- Appendices.- A1 Geometric Understanding of Matrices and Vectors.-  A2 Decomposition of Sums of Squares.-  A3 Singular Value Decomposition (SVD).- A4 Matrix Computation Using SVD.- A5 Supplements for Probability Densities and Likelihoods.- A6 Iterative Algorithms.- References.- Index.

Erscheinungsdatum
Zusatzinfo 8 Tables, color; 8 Illustrations, color; 47 Illustrations, black and white; XIII, 301 p. 55 illus., 8 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Gewicht 5974 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Sozialwissenschaften Soziologie
Schlagworte Data Analysis • matrices • multivariate analysis • Statistics • Vectors
ISBN-10 981-10-2340-9 / 9811023409
ISBN-13 978-981-10-2340-8 / 9789811023408
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00