Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis
Seiten
2012
|
2nd ed. 2013
Springer-Verlag New York Inc.
978-1-4614-5103-7 (ISBN)
Springer-Verlag New York Inc.
978-1-4614-5103-7 (ISBN)
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.
Uffe B. Kjærulff holds a PhD on probabilistic networks and is an Associate Professor of Computer Science at Aalborg University. Anders L. Madsen of HUGIN EXPERT A/S holds a PhD on probabilistic networks and is an Adjunct Professor of Computer Science at Aalborg University.
Introduction.- Networks.- Probabilities.- Probabilistic Networks.- Solving Probabilistic Networks.- Eliciting the Model.- Modeling Techniques.- Data-Driven Modeling.- Conflict Analysis.- Sensitivity Analysis.- Value of Information Analysis.- Quick Reference to Model Construction.- List of Examples.- List of Figures.- List of Tables.- List of Symbols.- References.- Index.
Reihe/Serie | Information Science and Statistics ; 22 |
---|---|
Zusatzinfo | XVIII, 382 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Computerprogramme / Computeralgebra | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Sozialwissenschaften ► Pädagogik | |
Sozialwissenschaften ► Soziologie | |
Wirtschaft ► Betriebswirtschaft / Management | |
Schlagworte | Bayesian networks • Graphical Models • Influence Diagrams • model analysis • Model Construction • Probabilistic Networks |
ISBN-10 | 1-4614-5103-5 / 1461451035 |
ISBN-13 | 978-1-4614-5103-7 / 9781461451037 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython
Buch | Softcover (2023)
O'Reilly (Verlag)
44,90 €
Datenanalyse für Künstliche Intelligenz
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95 €