Dualisability - Jane G. Pitkethly, Brian A. Davey

Dualisability

Unary Algebras and Beyond
Buch | Softcover
264 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2005
Springer-Verlag New York Inc.
978-1-4419-3901-2 (ISBN)
106,99 inkl. MwSt
Natural duality theory is one of the major growth areas within general algebra. This combination of local simplicity and global complexity ensures that, for the study of natural duality theory, unary algebras are an excellent source of examples and counterexamples.

A number of results appear here for the first time.
Natural duality theory is one of the major growth areas within general algebra. This text provides a short path to the forefront of research in duality theory. It presents a coherent approach to new results in the area, as well as exposing open problems.


Unary algebras play a special role throughout the text. Individual unary algebras are relatively simple and easy to work with. But as a class they have a rich and complex entanglement with dualisability. This combination of local simplicity and global complexity ensures that, for the study of natural duality theory, unary algebras are an excellent source of examples and counterexamples.


A number of results appear here for the first time. In particular, the text ends with an appendix that provides a new and definitive approach to the concept of the rank of a finite algebra and its relationship with strong dualisability.

Unary algebras and dualisability.- Binary homomorphisms and natural dualities.- The complexity of dualisability: three-element unary algebras.- Full and strong dualisability: three-element unary algebras.- Dualisability and algebraic constructions.- Dualisability and clones.- Inherent dualisability.

Erscheint lt. Verlag 8.12.2010
Reihe/Serie Advances in Mathematics ; 9
Zusatzinfo 38 Illustrations, black and white; XII, 264 p. 38 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Schulbuch / Wörterbuch
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Graphentheorie
Sozialwissenschaften
ISBN-10 1-4419-3901-6 / 1441939016
ISBN-13 978-1-4419-3901-2 / 9781441939012
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten

von Christian Karpfinger

Buch | Softcover (2022)
Springer Spektrum (Verlag)
54,99