Advances in Genetics -

Advances in Genetics (eBook)

eBook Download: PDF | EPUB
1997 | 1. Auflage
414 Seiten
Elsevier Science (Verlag)
978-0-08-056823-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
131,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Genetics increases its focus on modern human genetics and its relation to medicine with the merger of this long-standing serial with Molecular Genetic Medicine. This merger affirms theAcademic Press commitment to publish important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.
Advances in Genetics increases its focus on modern human genetics and its relation to medicine with the merger of this long-standing serial with Molecular Genetic Medicine. This merger affirms theAcademic Press commitment to publish important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.

Front Cover 1
Advances in Genetics, Volume 36 4
Copyright Page 5
Contents 6
Contributors 8
Chapter 1. The Peripheral Neuropathies and Their Molecular Genetics 10
I. Historical Introduction 11
II. Clinical Classification of CMT 11
III. Genetic Classification 13
IV. Molecular Mechanisms in CMT1A 17
V. Molecular Mechanisms of CMT1B, DSD, and CMTX1 28
VI. Myelin Proteins and Their Functional Significance 30
VII. Molecular Diagnostic Testing for CMT and HNPP 43
References 45
Chapter 2. Tumor Suppressor Genes and Human Cancer 54
I. Introduction 55
II. Tumor Suppressor Genes and Their Products 62
III. The Role of Tumor Suppressor Genes in Human Cancer 103
IV. Conclusions 114
References 116
Chapter 3. Genetic Redundancy 146
I. Introduction: The Evolutionary Background of Adaptation and Pleiotropy 147
II. Evidence for Redundancy 148
III. Apparent and True Redundancy 152
IV. The Organism and the Cell 159
V. Redundancy as a Fail-Safe System 160
VI. Functional Redundancy 161
VII. Conclusions 162
References 162
Chapter 4. Genetics of Hybrid Inviability in Drosophila 166
I. Introduction 166
II. Genetic Studies on Hybrid Inviability 168
III. Chromosomes and Genes Influencing Hybrid Viability 177
IV. Genetic Models for the Basis of Hybrid Inviability 184
V. Conclusions 188
References 190
Chapter 5. Regulation of Bacterial Gene Expression by Metals 196
I. Introduction 196
II. Essential Metals 199
III. Toxic Metals 214
IV. Concluding Remarks 235
References 236
Chapter 6. Chromosome Rearrangements in Neurospora and Other Filamentous Fungi 248
I. Introduction 250
II. General Information Regarding Neurospora Rearrangements 254
III. New Findings 265
IV. Rearrangements in Other Fungi 286
V. Individual Chromosome Rearrangements of Neurospora crassa 294
VI. Summary 391
References 392
Index 408

2

Tumor Suppressor Genes and Human Cancer


Melissa A. Brown    Somatic Cell Genetics Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, England

I INTRODUCTION


Ideas contributing to our understanding of tumorigenic mechanisms date from the 1700s, when early records of cancer families suggested that cancer was a genetic disease. Most of our present knowledge, however, is built on the contributions of researchers in this century (reviewed in Witkowski, 1990). In 1911 Peyton Rous demonstrated that cell-free extracts from chickens could transmit tumors, suggesting the existence of tumor viruses. Subsequent studies on these viruses ultimately led to identification of the first dominantly acting oncogene, src, in 1976. The notion that abnormalities in chromosomes may cause cancer, suggested by Boveri in 1914, together with observations in the 1960s and 1970s that tumorigenicity could be suppressed by fusing malignant cells with either normal cells or specific chromosomes, led to the hypothesis that loss of genetic material may also be a critical event in tumorigenesis. This was later confirmed cytogenetically in 1983, subsequently leading to the isolation of the first tumor suppressor gene, RB, in 1986. Intensive research over the last 20 years has culminated in the isolation and characterization of over 50 dominantly acting oncogenes and the realization that the products of these genes are involved in the regulation of normal cell growth and development; the identification and isolation of many tumor suppressor genes, the products of which have been shown to be negative regulators of cell growth and development; and the demonstration that tumorigenesis is a multistep process requiring mutations in at least two of these cancer genes (reviewed in Fearon and Vogelstein, 1990; Vogelstein and Kinzler, 1993).

It has been only a decade since the isolation of the first tumor suppressor gene, yet a phenomenal amount of information has been generated in this area. Several themes have emerged. Tumor suppressor genes encode a diverse group of proteins which, through a variety of mechanisms, function to negatively regulate cell growth and development (Table 2.1). Perhaps due to the intensive interest in the factors controlling the cell cycle, many of the tumor suppressors isolated so far are directly involved in regulating this process, commonly binding and blocking the function of cyclin-dependent kinases (CDKs) (Fig. 2.1; Table 2.1). The importance of tumor suppressors in the control of other pathways has also been demonstrated: for example, upstream signal transduction pathways in the case of NF1; cell–cell communication in the case of DCC and possibly APC, and the mechanics of transcription in the case of VHL (Table 2.1).

Table 2.1

Characteristics of Tumor Suppressor Genes

RB pRb 13q14 Negative regulator of E2F transcription factors Familial retino-blastoma Yes Yes Disruptive (deletion, loss of expr.) Varies Yes Yes Homzr.lethal;heteroz. tumor susceptible
TP53 p53 17p13 Cell-cycle transcription factor (induces p21 exp.) Li-Fraumeni Yes Yes Disruptive (point mutation) Varies Yes Yes Homoz. tumor susceptible
CIP1
WAF1
CAP20
SD11
p21 6p21 Negative regulator of CDK–cyclin complexes No Yes Yes Disruptive (point mutation) Yes Yes Yes Homoz. normal but defective G1 arrest
KIP1 p27 12p13 Negative regulator of CDK–cyclin complexes No No
KIP2 p57 11p15 Negative regulator of CDK–cyclin complexes ?Wilms (BWS) Yes ?
INK4A
MTS1
CDKN2
MLM1
p16 9p21 Negative regulator ofCDK–cyclin complexes Familial melanoma Yes Yes Disruptive (deletion) Yes
INK4B
MTS2
CDKN2B
p15 9p21 Negative regulator ofCDK–cyclin complexes No Yes No
INK4C p18 1p32 Negative regulator of CDK–cyclin complexes No No
INK4D
CDKN2D
p19 19p13 Negative regulator of CDK–cyclin complexes No No
ARF1 P16 (arf1) 9p21 Negative regulator of CDK–cyclin complexes ?Familial melanoma Yes Yes Disruptive
WT1 WT1 11p13 Transcription factor and RNA splicing regulator Wilms’ (WAGR + DDS) Yes Yes Varied (missenre mutations which abolish DNA binding capacity) Yes Yes Yes Homoz. lethal; heteroz. no phenotype
APC APC 5q21 Regulation of cell adhesion and cell cycle Familial adenomatous coli Yes Yes Disruptive (truncating) Yes Yes Yes Homoz. lethal; heteroz. tumor susceptibility
NF1 Neuro-fibromin 17q12 Regulator of G protein–mediated signaltransduction Neurofibromatosis type 1 No Yes Disruptive (truncating or loss of expression) Yes Yes Homoz. lethal; heteroz. tumor susceptibility
NF 2 Merlin 22q12 ?Regulator of membrane signaling; ?regulator of cell morphology Neurofibromatosis type II Yes Yes Disruptive (truncating) Yes Yes Yes
VHL VHL 3p25 Regulator of transcriptional elongation VonHippel–Lindau Yes Yes Disruptive (truncating and missense) No Yes
BRCA1 BRCA1 17q21 ? Familialbreast/ovariancancer syndrome and familial site-specific breast cancer Yes Rare (ovarian cancan only) Disruptive (truncating) Yes Yes Yes Homoz. lethal; heteroz. normal
BRCA2 BRCA2 13q12 ? Familialbreast cancer Yes Rare (ovarian cancan only) Disruptive (truncating mostly small deletions)
AT ATM 11q22 Cell cycle regulation in response to DNA damage Ataxia-telangiec-tasia Yes No Disruptive (truncating and deletions)
MSH2 MSH2 2p22 DNA mismatch repair HNPCC ?No Yes Disruptive Homoz. tumor susceptible
MLH1 MLHl 3p21–23 " HNPCC Yes Yes
PMS1 PMS1 2q31–33 " HNPCC ?No Yes
PMS2 PMS2 7p22 " HNPCC ?No Yes Homoz. tumor susceptible + genetic instability
DCC DCC 18q21 Regulation of cell growth and differentiation through cell–cell contact No Yes Rare Loss of expression, intron mutations, inissense mutations Yes Yes Yes
DPC4 DPC4 18q21 TGFβ-mediated signal transduction No Yes Yes Disruptive
H19 No protein 11p15 ?Regulation of expression of nearby...

Erscheint lt. Verlag 13.9.1997
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie Medizinische Fachgebiete Onkologie
Studium 2. Studienabschnitt (Klinik) Humangenetik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Humanbiologie
Technik
ISBN-10 0-08-056823-8 / 0080568238
ISBN-13 978-0-08-056823-2 / 9780080568232
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 23,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 6,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Leber, Gallenwege und Pankreas

von Andrea Tannapfel; Günter Klöppel

eBook Download (2020)
Springer Berlin Heidelberg (Verlag)
299,00

von Berit Hackenberg; Anja Hohmann

eBook Download (2023)
Urban & Fischer Verlag - Lehrbücher
26,99