Current Topics in Developmental Biology

Current Topics in Developmental Biology (eBook)

eBook Download: PDF | EPUB
2007 | 1. Auflage
410 Seiten
Elsevier Science (Verlag)
978-0-08-055430-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
170,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This serial provides a comprehensive survey of the major topics in the field of developmental biology. These volumes are valuable to researchers in animal and plant development, as well as to students and professionals who want an introduction to cellular and molecular mechanisms of development. The series has recently passed its 30-year mark, making it the longest-running forum for contemporary issues in developmental biology.

Volume 80 provides seven chapters on the latest research in developmental biology.
This serial provides a comprehensive survey of the major topics in the field of developmental biology. These volumes are valuable to researchers in animal and plant development, as well as to students and professionals who want an introduction to cellular and molecular mechanisms of development. The series has recently passed its 30-year mark, making it the longest-running forum for contemporary issues in developmental biology. Volume 80 provides seven chapters on the latest research in developmental biology.

Cover 1
Contents 6
Contributors 10
Preface 12
Chapter 1: Similarities Between Angiogenesis and Neural Development: What Small Animal Models Can Tell Us 15
I. Introduction 16
II. Small Animal Models to Study Blood and Vessel Guidance 18
A. Caenorhabditis elegans (Nematode Worm) 19
B. D. melanogaster (Fruit Fly) 23
C. Zebrafish 27
D. Xenopus 30
III. Vascular and Neural Cell-Fate Specification 34
IV. Molecular Links Between Angiogenesis and Neurogenesis 36
V. Similarities in the Organization of Vascular and Neural Boundaries 38
VI. Molecular Cues Involved in Nerve and Vessel Guidance 40
A. Axon Growth Cones and Endothelial Tip Cells 40
B. Common Signals for Axon and Blood Vessel Wiring 42
VII. Perspectives 55
Acknowledgments 56
References 56
Chapter 2: Junction Restructuring and Spermatogenesis: The Biology, Regulation, and Implication in Male Contraceptive Development 71
I. Introduction 72
II. Anchoring Junctions in the Testes: An Update 74
A. Actin-Based Adherencs Junctions 74
B. Testis-Specific AJs: ES and TBC 74
C. Intermediate Filament-Based Anchoring Junctions 76
III. Roles of ECM Proteins in Junction Dynamics in the Testes 77
A. Collagens 77
B. Laminins 78
C. Laminin Receptors 83
IV. Role of Androgens in Junction Dynamics in Testes 86
A. Introduction 86
B. Models to Study the Role of Androgen in Spermatogenesis 87
V. Regulation of Junction Turnover by Protein Endocytosis and Recycling 90
A. An Overview 90
B. Recent Advances on Studies Investigating the Role of Endocytosis in Junction Dynamics in the Testis 91
VI. Regulation of Junction Dynamics by Myoid Cells 93
VII. Environmental Toxicants: Are They Targeting the Tight and/or Anchoring Junction? 95
VIII. Concluding Remarks 96
Acknowledgments 97
References 97
Chapter 3: Substrates of the Methionine Sulfoxide Reductase System and Their Physiological Relevance 107
I. Introduction 108
A. Msr System 109
II. Regulated Substrates 110
A. Alpha1-Antitrypsin 111
B. Calmodulin 111
C. High-Density Lipoprotein 112
D. Inhibitor of Kappa B-Alpha 114
E. Potassium Channels 114
F. Thrombomodulin 116
G. Tissue Plasminogen Activator 116
III. Scavenging Substrates 117
A. Blood Clotting Cascade/Fibrinolysis 117
B. Cytokines 118
C. Enzymes 120
D. Heat Shock Proteins 120
E. Hormones 122
F. Mucus Protease Inhibitor 122
IV. Modified Substrates with "Damaged" Effects 123
A. Enzymes 123
B. Heme Proteins 126
C. Hormones 127
D. Neurodegenerative Disease Associated 130
E. Serine Protease Inhibitors (Serpins) 133
F. Snake Venom Toxins 134
G. Miscellaneous Substrates 135
V. Discussion 137
References 139
Chapter 4: Organic Anion-Transporting Polypeptides at the Blood-Brain and Blood-Cerebrospinal Fluid Barriers 149
I. Introduction 150
II. BBB Structure and Function 150
III. BCSFB Structure and Function 152
IV. The OATP/Oatp Superfamily 154
V. Molecular Architecture of the Oatp Superfamily 156
VI. Oatp Substrate Structural Features 159
VII. OATP/Oatp Expression and Action at the BBB and BCSFB 162
VIII. Specific Oatps/Oatps Expressed at BBB and BCSFB 165
A. Oatp1a1 165
B. OATP1A2 165
C. Oatp1a4 167
D. Oatp1a5 167
E. Oatp1c1 168
F. Oatp2a1 168
IX. PG Metabolism and Oatps 169
X. Oatp-Mediated Transport of Conjugated Endobiotics 172
XI. Oxidation, Conjugation, and Transport Metabolism of DHEA and Estradiol (E2) in the Brain 173
A. Oxidative Metabolism 173
B. Conjugation Metabolism 174
C. Transport Metabolism 175
XII. Summary 177
Acknowledgments 178
References 178
Chapter 5: Mechanisms and Evolution of Environmental Responses in Caenorhabditis elegans 185
I. Introduction 186
II. Interactions Between Organism and Environment 187
A. Environmental Effects on the Phenotype 187
B. Environmental Sensitivity of the Phenotype 187
C. Role and Evolutionary Significance of Environmental Sensitivity of Development 189
III. The Nematode C. elegans 190
A. General Biology 190
B. Natural Environment 191
C. Laboratory Environment 193
IV. Overview of C. elegans Responses to the Environment 194
A. Perception and Transduction of Environmental Signals 194
B. Global Responses in Physiology and Gene Expression 196
C. Stress Responses 196
D. Immune Responses 197
E. Behavioral Responses 197
F. Developmental, Morphological, and Life History Responses 198
G. Evolution of Environmental Responses 198
V. Phenotypic Plasticity of C. elegans Dauer Formation 200
A. Characteristics of the Dauer Larva 200
B. Environmental Cues Regulating Dauer Development 201
C. Perception and Transduction of Environmental Cues 202
D. Evolution of Dauer Formation 203
VI. Environmental Robustness of C. elegans Vulva Formation 204
A. Vulva Development 205
B. Environmental Robustness of the Final Vulva Phenotype 207
C. Environmental Sensitivity of Vulva Developmental Processes 208
D. Developmental and Molecular Features Causing Robustness to Variation in the Environment 209
E. Evolution of Vulval Development 211
VII. Conclusion 212
Acknowledgments 212
References 213
Chapter 6: Molluscan Shell Proteins: Primary Structure, Origin, and Evolution 223
I. Introduction: The Shell, a Biologically Controlled Mineralization 224
II. Molluscan Shell Formation: Developmental Aspects 226
A. The Larval Shell 226
B. The Juvenile and Adult Shell 231
C. Transient Amorphous Calcium Carbonate 234
III. The Topographic Models of Shell Mineralization 235
A. Early Nacre Descriptions and Models 236
B. Recent Nacre Models and Evolving Views 238
C. Prism Models 240
IV. Molluscan Shell Proteins: Characterization of Their Primary Structure 243
A. Extremely Acidic Shell Proteins 245
B. Moderately Acidic Shell Proteins 248
C. Basic Shell Proteins 252
D. Partially Characterized Shell Proteins 255
E. Other Molluscan Proteins: The Extrapallial Fluid and the Mantle 262
F. Remarks on Molluscan Shell Proteins 265
V. Origin and Evolution of Molluscan Shell Proteins 268
A. The Cambrian Origin of Mollusk Shell Mineralization 268
B. The "Ancient Heritage" Scenario 270
C. The "Recent Heritage and Fast Evolution" Scenario 272
D. Long-Term Evolution of Shell Matrices and Microstructures: The Bivalve Example 274
VI. Concluding Remarks 276
Acknowledgments 277
References 277
Chapter 7: Pathophysiology of the Blood-Brain Barrier: Animal Models and Methods 291
I. The Blood-Brain Barrier 292
A. Introduction 292
B. Regulation of Paracellular Permeability 293
C. Catalyzed Transport and Biotransformation 296
D. Endocytotic Transport 298
E. The Neurovascular Unit and the Limitations of In Vitro Models 299
II. Animal-Based Methods in BBB Pathophysiology 299
A. General Considerations 299
B. Brain Uptake Measurements 301
C. In Vivo Imaging 304
D. Genomic/Proteomic Approaches 305
III. BBB Dysfunction as a Complication of Peripheral Disease 306
A. The BBB in CNS Disease 306
B. The BBB in Diabetes 307
C. Inflammatory Pain and the BBB 308
IV. The BBB in Disease Etiology 309
V. Concluding Remarks 311
Acknowledgments 311
References 311
Chapter 8: Genetic Manipulation of Megakaryocytes to Study Platelet Function 325
I. Introduction 326
II. Culture and Differentiation of Megakaryocytes 327
A. Bone Marrow-Derived Megakaryocytes 329
B. Feta Liver-Derived Megakaryocytes 330
C. Embryonic Stem Cell-Derived Megakaryocytes 330
D. Other Sources of Megakaryocytes 332
E. Characterization of Megakaryocytes 332
III. Genetic Manipulation of Megakaryocytes 334
A. Sindbis Virus-Mediated Transduction 334
B. Retrovirus-Mediated Transduction 334
C. Lentivirus-Mediated Transduction 337
D. RNA Interference in Megakaryocytes 339
IV. Current Use and Future Application of Megakaryocytes 339
A. Use of Megakaryocytes to Study Integrin aIIbbeta3 Signaling 339
B. The Study of Proplatelet Formation in Cultured Megakaryocytes 343
C. Potential Uses of Human Megakaryocytes to Treat Inherited Platelet Disorders 344
Acknowledgments 345
References 346
Chapter 9: Genetics and Epigenetics of the Multifunctional Protein CTCF 351
I. History of CTCF Discovery 352
II. Multifunctional Nature of CTCF Versus Its Multiple Sequence Specificity 352
III. CTCF Functions in Epigenetic Regulation in Development 358
A. Regulation of Genomic Imprinting 358
B. CTCF Role in X-Chromosome Inactivation 359
IV. CTCF Function in Chromatin Organization of Repetitive Elements 360
V. Is CTCF a Tumor Suppressor Gene? 362
A. Genetic Basis for Deregulation of CTCF in Cancer 362
B. Epigenetic Mechanisms of Selective Loss of CTCF Function in Cancer 364
C. Genetics and Epigenetics of CTCF in Cancer 365
VI. Concluding Remarks 367
Acknowledgments 367
References 368
Index 375
Contents of Previous Volumes 387

2

Junction Restructuring and Spermatogenesis: The Biology, Regulation, and Implication in Male Contraceptive Development


Helen H.N. Yan; Dolores D. Mruk; C. Yan Cheng    Center for Biomedical Research, Population Council, New York, New York 10021

Abstract


Spermatogenesis that occurs in the seminiferous epithelium of adult mammalian testes is associated with extensive junction restructuring at the Sertoli–Sertoli cell, Sertoli–germ cell, and Sertoli–basement membrane interface. While this morphological phenomenon is known and has been described in great details for decades, the biochemical and molecular changes as well as the mechanisms/signaling pathways that define changes at the cell–cell and cell–matrix interface remain largely unknown until recently. In this chapter, we summarize and discuss findings in the field regarding the coordinated efforts of the anchoring [e.g., adherens junction (AJ), such as basal ectoplasmic specialization (basal ES)] and tight junctions (TJs) that are present in the same microenvironment, such as at the blood–testis barrier (BTB), or at distinctly opposite ends of the Sertoli cell epithelium, such as between apical ectoplasmic specialization (apical ES) in the apical compartment, and the BTB adjacent to the basal compartment of the epithelium. These efforts, in turn, regulate and coordinate different cellular events that occur during the seminiferous epithelial cycle. For instance, the events of spermiation and of preleptotene spermatocyte migration across the BTB both take place concurrently at stage VIII of the epithelial cycle of spermatogenesis. Recent findings suggest that these events are coordinated by protein complexes found at the apical and basal ES and TJ, which are located at different ends of the Sertoli cell epithelium. Besides, we highlight important areas of research that can now be undertaken, and functional studies that can be designed to tackle different issues pertinent to junction restructuring during spermatogenesis.

I Introduction


During spermatogenesis, spermatozoa (haploid, 1n) are formed from spermatogonial stem cells (diploid, 2n) in the testes. This event takes place in the seminiferous tubules of mammalian testes such as in rats and humans. This process completes in ∼58 days in rats when a single spermatogonium undergoes six sequential mitotic and two meiotic divisions to give rise to fully developed spermatids (spermatozoa) (de Kretser and Kerr, 1988; Leblond and Clermont, 1952). The morphological changes of germ cells in the seminiferous epithelium during spermatogenesis can be divided into 14 stages (stages I–XIV) in rats, which, in turn, constitute one seminiferous epithelial cycle. Each stage is typified by the association of germ cells at defined stages of their development with Sertoli cells (Cheng and Mruk, 2002; Hess et al., 1990; Leblond and Clermont, 1952; Mruk and Cheng, 2004a; Parvinen, 1982). Other than the morphological changes associated with germ cell development during spermatogenesis, some spermatogonial stem cells residing near the basement membrane, via a yet‐to‐be defined mechanism, transform into type B spermatogonia, which enter into the cell cycle by differentiating into preleptotene spermatocytes, traversing the blood–testis barrier (BTB) and migrate progressively across the seminiferous epithelium. However, germ cells remain attached to Sertoli cells for nourishment and structural supports at all time during the epithelial cycle while differentiating into spermatozoa (Russell, 1977b). During this active cell migration process, intermittent junction disassembly and reassembly occur at the Sertoli–Sertoli cell and Sertoli–germ cell interface (Mruk and Cheng, 2004b). If cross talk between these cells is disrupted, spermatogenic cells cannot migrate and/or orientate properly in the seminiferous epithelium. This thus leads to germ cell apoptosis, premature germ cell depletion from the epithelium, and infertility.

During the seminiferous epithelial cycle, two crucial cellular events take place simultaneously at stages VII–VIII which last for ∼3.5 days in rats: (1) the migration of preleptotene spermatocytes across the BTB, and (2) the depletion of mature spermatozoa from the luminal edge of the epithelium into the tubule lumen at spermiaton. However, the biochemical events and the molecular mechanisms by which these events are coordinated and regulated are virtually unknown until recently. Since the molecular architecture of different cell junction types in the testis has been reviewed (Bart et al., 2002; Cheng and Mruk, 2002; Mruk and Cheng, 2004b; Toyama et al., 2003; Vogl et al., 2000, 2007) and summarized in Table I, this subject area is not covered in this chapter. Furthermore, the regulation of BTB dynamics during spermatogenesis, in particular the roles and the involvement of cytokines, proteases, and protease inhibitors has also been reviewed (Lui et al., 2003a; Wong and Cheng, 2005), readers are encouraged to seek information from these earlier reviews. Instead, we focus herein more recent findings in the field in particular the roles of extracellular matrix components, steroids, and GTPases that contributed to the two coordinated cellular events at stages VII–VIII of the epithelial cycle during spermatogenesis. We also provide a recent update on the anchoring junctions in the testis and present a hypothesis regarding the unusual vulnerability of the testes toward different environmental toxiants. In particular, we highlight the significance of cross talk between different junction types restricted to different cellular compartments in the seminiferous epithelium. It is likely that these cross talks play a crucial role in coordinating different biochemical events during the epithelial cycle.

Table I

Types of Junctions Found in the Seminiferous Epithelium of Adult Testes

Junction Type Location
Occluding/TJ Sertoli–Sertoli cells at the BTB
Anchroing junction
1. Actin filaments‐based cell–cell anchoring junctions
 i. Classic adheren junctions Sertoli–Sertoli cells and Sertoli–germ cells
 ii. Ectoplasmic specialization (ES)
 a. Basal ES Sertoli–Sertoli cells at the BTB
 b. Apical ES Sertoli cell‐elongating/elongated spermatid (from step 8 spermatid and beyond)
 iii. TBC
 a. Basal TBC Sertoli–Sertoli cells at the BTB
 b. Apical TBC Sertoli–elongated spermatids
2. Intermediate filament‐based cell–cell desmosome‐like junctions Sertoli–germ cells (spermatogonia, spermatocytes, and prior to step 8 spermatids)
Communicating/GJs Between Leydig cells, Sertoli–Sertoli cells at the BTB, and Sertoli–germ cells

II Anchoring Junctions in the Testes: An Update


A Actin‐Based Adherens Junctions


Based on earlier studies that define the localization of actin‐based cytoskeletal filaments in the seminiferous epithelium of adult rodent testes (Vogl, 1989; Vogl et al., 2007), actin‐based adherens junctions (AJs) are mostly concentrated in two specific regions: (i) the BTB at the Sertoli–Sertoli cell interface, and (ii) the apical ectoplasmic specialization (ES) and the apical tubulobulbar complex (TBC) at the Sertoli–spermatid interface. Most of the reports in the field regarding AJ in the testis are focused on ES such as basal ES at the BTB, and apical ES (for reviews, see Mruk and Cheng, 2004a; Vogl et al., 2000). Thus, other actin‐based AJ at the Sertoli–Sertoli and Sertoli–spermatogonia, –spermatocyte, or –round spermatid interface are less characterized and studied. Skeletal protein 4.1 G identified in the mouse testis (Terada et al., 2005) perhaps is one of the few AJ structural components that has been studied thus far in testes. Under electron microscope, it was found to localize to the plasma membrane of Sertoli cells where germ cells attached. It also colocalized with E‐cadherin but not at the site of basal or apical ES when visualized by immunofluorescent microscopy (Terada et al., 2005).

B Testis‐Specific AJs: ES and TBC


ES is the best characterized AJ type in the testis. It is confined to the interface between Sertoli cells at the BTB known as the basal ES, as well as between Sertoli cells and elongating/elongated spermatids designated the apical ES (Mruk and Cheng, 2004a; Russell, 1977c; Toyama et al., 2003; Vogl et al., 2000). ES is different from the classic AJ in many ways. For instance, ES is typified ultrastructurally by the presence of hexagonally‐packed actin bundles sandwiched between Sertoli cell plasma membrane and the cisternae of endoplasmic reticulum; these ultrastructures are readily...

Erscheint lt. Verlag 15.10.2007
Mitarbeit Herausgeber (Serie): Gerald P. Schatten
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zellbiologie
Technik
ISBN-10 0-08-055430-X / 008055430X
ISBN-13 978-0-08-055430-3 / 9780080554303
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 7,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 10,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
DNA, RNA, Mutationen, Klonierung und Co. verstehen

von Tara Rodden Robinson; Lisa J. Spock

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
17,99