This book, the 5th volume in the Handbook of Analytical Separations series, gives an overview about methods to analyse drugs in biological fluids. The most widely used methods to analyse drugs in biological fluids. i.e. chromatographic methods, CE and immunoassays are described in detail. For important drugs, an overview about the methods available and a comparison of the techniques should be given to enable the reader to choose the right method depending on laboratory equipment, staff, the aim of the investigation etc. Other general aspects important for conducting therapeutic drug monitoring or pharmacokinetics studies are also covered, i.e. sample preparation, validation of the analytical methods and pharmacokinetic methods for interpreting the data. Areas where therapeutic drug monitoring is used frequently such as antibiotics, immunosuppressant drugs, antipsychotic and anticancer drugs will be discussed in detail. In addition, the important field of phenotyping and genotyping for therapy optimisation with special focus on real-life applications is also covered.
The book contains important information for analyst working on drug analysis in clinical chemistry, hospital pharmacists involved in therapeutic drug monitoring, other pharmacists, chemists or physicians working on pharmacokinetic studies in industry or academia.
In contrast to other books in this field, this book provides up-to-date information regarding both methodology and clinical applications. For the applications, only fields are described where therapeutic drug monitoring is used in clinical routine and provides benefit to the patients.
1. Overview of all important field where therapeutic drug monitoring is applied
2. All relevant analytical and computational methods are discussed
3. Written by experts with a lot of practical experience in the field
Drug Monitoring and Clinical Chemistry, the 5th volume in the Handbook of Analytical Separations series, gives an overview about methods to analyse drugs in biological fluids. The most widely used methods to analyse drugs in biological fluids. i.e. chromatographic methods, CE and immunoassays are described in detail. For important drugs, an overview about the methods available and a comparison of the techniques should be given to enable the reader to choose the right method depending on laboratory equipment, staff, the aim of the investigation etc. Other general aspects important for conducting therapeutic drug monitoring or pharmacokinetics studies are also covered, i.e. sample preparation, validation of the analytical methods and pharmacokinetic methods for interpreting the data. Areas where therapeutic drug monitoring is used frequently such as antibiotics, immunosuppressant drugs, antipsychotic and anticancer drugs will be discussed in detail. In addition, the important field of phenotyping and genotyping for therapy optimisation with special focus on real-life applications is also covered. The book contains important information for analyst working on drug analysis in clinical chemistry, hospital pharmacists involved in therapeutic drug monitoring, other pharmacists, chemists or physicians working on pharmacokinetic studies in industry or academia. In contrast to other books in this field, this book provides up-to-date information regarding both methodology and clinical applications. For the applications, only fields are described where therapeutic drug monitoring is used in clinical routine and provides benefit to the patients. - Overview of all important field where therapeutic drug monitoring is applied- All relevant analytical and computational methods are discussed- Written by experts with a lot of practical experience in the field
Front Cover 1
Drug Monitoring and Clinical Chemistry 4
Copyright Page 5
Contents 8
Preface 6
Chapter 1. Sample preparation for the analysis of drugs in biological fluids 20
1.1 Introduction 20
1.2 Conventional sample preparation for biological samples 21
1.3 Microextraction methods for biological analyses 26
1.4 Future prospects in biological sample preparation methods 29
1.5 Acknowledgements 30
1.6 References 30
Chapter 2. Chromatographic methods for the analysis of drugs in biological fluids 34
2.1 Introduction 34
Part I. Chromatographic methods of analysis of drugs in biological fluids 35
2.2 HPLC 35
2.3 LC/MS 58
2.4 GC 61
2.5 GC/MS 61
2.6 Other methods 66
Part II. Chromatographic methods for the analysis of chiral drugs in biological fluids 68
2.7 Introduction 68
2.8 Pirkle concept chiral columns 75
2.9 Cellulose-derivative chiral columns 75
2.10 Amylose-derivative chiral columns 82
2.11 Cyclodextrin-derivative chiral columns 83
2.12 Cyclodextrin-derivative chiral mobile phase additives 83
2.13 Protein chiral columns 84
2.14 Macrocylic antibiotic chiral columns 85
2.15 GC 86
2.16 Indirect chiral chromatographic methods 86
2.17 Other methods 87
2.18 List of abbreviations 87
2.19 References 88
Chapter 3. Capillary electrophoresis for the determination of drugs in biological fiuids 96
3.1 Introduction 97
3.2 CE, HPLC and immunoassays in drug analysis 97
3.3 Instrumentation and detection 98
3.4 Modes of CE in drug analysis and detection 99
3.5 Buffers 100
3.6 Sample size and injection 100
3.7 Sample preparation in CE 100
3.8 Precision 104
3.9 CE and basic information for drugs 104
3.10 Selected applications of drugs analyzed by CE 107
3.11 References 111
Chapter 4. Immunoassays for therapeutic drug monitoring and clinical toxicology 114
4.1 Introduction 114
4.2 Immunoassays 117
4.3 References 129
Chapter 5. Validation of bioanalytical methods 132
5.1 Introduction 132
5.2 Requirements for bioanalytical methods 132
5.3 Pre-study validation 133
5.4 Within study validation 139
5.5 Definitions 144
5.6 Abbreviations 146
5.7 References 147
Chapter 6. Pharmacokinetic methods for analysis, interpretation, and management of TDM data, and for individualizing drug dosage regimens optimally 148
6.1 Introduction and overview 148
6.2 The need for models 151
6.3 Maximum aposteriori probability (MAP) Bayesian individualization of drug dosage regimens 152
6.4 Analyzing assay and environmental sources of error 155
6.5 Examples of MAP Bayesian target-oriented, model-based, approaches to patient care 158
6.6 Other studies of outcome and cost of TDM 160
6.7 Why we really monitor serum concentrations: for clinician-managed, model-based, target-oriented individualized drug therapy 165
6.8 Optimal TDM monitoring strategies 166
6.9 Special cases: entering initial conditions – changing population models during the fitting procedure 169
6.10 Linked pharmacodynamic models: bacterial growth and kill 171
6.11 Other linked pharmacodynamic models: aminoglycoside nephrotoxicity and ototoxicity 174
6.12 Limitations of current map bayesian adaptive control 176
6.13 Overcoming the separation principle: “multiple model” design of maximally precise drug dosage regimens 177
6.14 The future of individualized drug therapy 184
6.15 Acknowledgments 185
6.16 References 185
Chapter 7. Dose and therapy individualisation in cancer chemotherapy 188
7.1 Introduction 188
7.2 Concepts of dose finding in oncology 189
7.3 5-Fluorouracil (5-FU) 205
7.4 In-vitro-cytotoxicity as a tool for therapy individualisation 205
7.5 Dosing based surrogate markers 206
7.6 Conclusions 206
7.7 References 207
Chapter 8. Rationale and utility of therapeutic drug monitoring for the optimization of antibiotic therapy 214
8.1 Introduction 214
8.2 Vancomycin 215
8.3 Aminoglycosides 218
8.4 Antitubercular agents 224
8.5 Antiretroviral therapeutic drug monitoring (ATDM) 229
8.6 Conclusion 231
8.7 References 231
Chapter 9. Therapeutic drug monitoring of antiepileptic drugs 240
Abstract 240
9.1 Introduction 240
9.2 Established antiepileptic drugs 245
9.3 Newer antiepileptic drugs 256
9.4 References 267
Chapter 10. Therapeutic drug monitoring of antidepressant and antipsychotic drugs 274
10.1 Introduction 274
10.2 Rationales for use of therapeutic drug monitoring of antidepressant and antipsychotic drugs 274
10.3 Antidepressants 277
10.4 Antipsychotics 284
10.5 Lithium 287
10.6 Conclusion 287
10.7 References 288
Chapter 11. Monitoring immunosuppressive drugs 292
11.1 Introduction 292
11.2 Cyclosporin 293
11.3 Tacrolimus 296
11.4 Mycophenolic acid 299
11.5 Sirolimus 302
11.6 Everolimus 305
11.7 External proficiency testing 305
11.8 Conclusions 306
11.9 References 307
Chapter 12. Pharmacogenomics: Methodologies for genotyping and phenotyping 316
12.1 Introduction 316
12.2 Methods for phenotyping 316
12.3 Discovery of unknown polymorphisms 317
12.4 Identification of known polymorphisms 319
12.5 Conclusion 334
12.6 References 335
Chapter 13. Applications of genotyping and phenotyping for clinically-relevant polymorphisms of drug metabolizing enzymes and drug transporters 340
13.1 Introduction 340
13.2 Thiopurine-S-Methyltransferase (TPMT) 342
13.3 Dihydropyrimidine dehydrogenase (DPD) 343
13.4 Thymidylate synthase (TS) 345
13.5 N-Acetyltransferase type 2 (NAT2) 346
13.6 Cytochrome P450 2D6 (CYP2D6) 349
13.7 Cytochrome P450 2C9 (CYP2C9) 352
13.8 Cytochrome P450 2C19 (CYP2C19) 354
13.9 Cytochrome P450 3A4 (CYP3A4) 356
13.10 P-Glycoprotein (PGP) 359
13.11 Perspective 362
13.12 References 362
Subject index 374
Chapter 2
Chromatographic methods for the analysis of drugs in biological fluids
Hassan Y. Aboul-Enein1; Mohamed M. Hefnawy1; Kenichiro Nakashima2 1 Pharmaceutical Analysis Laboratory, Biological and Medical Research Department (MBC 03), King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
2 Division of Analytical Research for Pharmacoinformatics, Department of Clinical Pharmacy, Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-Machi, Nagasaki 852-8521, Japan
2.1 INTRODUCTION
Analysis of drugs in biological fluids is very important and can give a wealth of information relating to pharmacokinetics, pharmacodynamics, pharmacology, toxicology and for therapeutic drug monitoring (TDM) purposes. To date, a wide variety of analytical methods has been developed and adapted for determining drugs in biological fluids, i.e. blood, urine, milk, etc.
This chapter focuses on the utilization of high-performance liquid chromatography (HPLC) and gas-chromatography (GC) and their hyphenated methods with mass spectrometry (MS), i.e. LC-MS and GC-MS, for the analysis of drugs in biological fluids. The more recent results on achiral drug analyses are selected and described with emphasis on the useful and practical methods. Recently, the hyphenated chromatographic methods for biomaterials were reviewed [1].
This chapter compromises two parts. Part I discusses the analysis of drugs in biological fluids, summarized in Tables 2.1-1 to 2.1-5 while Part II describes chromatographic method of analysis of chiral drugs in biological fluids with some examples summarized in Tables 2.2–1 to 2.2–9.
Table 2.1-1
HPLC-UV Detection
isoniazid | tuberculosis | HPLC-UV, 275 nm | plasma | 0.5–8 μg/ml regression slope = 1.03 | acetylisoniazid | 11 |
quinapril | ACE inhibitor anti-hypertension | HPLC-UV, 215 nm | plasma | 10–500 ng/ml | quinaprilat | 24 |
metaformin | antihyperglycemia, type-2 diabetes | HPLC-UV, 236 nm | plasma milk (breast) | 20–4000 μg/ml r2>0.99 | buformin | 8 |
omeprazole | H + /K + − ATPase inhibitor | HPLC-UV, 302 nm semimicro-column | plasma | 10–2000 ng/ml r>0.999 | omeprazole sulfone | 38 |
ranitidine | histamine H2-receptor agonist | HPLC-UV, 320 nm | plasma | 20–1000 ng/ml r>0.999 | | 12 |
fluconazole | antifungal drug | HPLC-UV, 210 nm | plasma | 0.195–100 ng/ml r>0.9999 | | 32 |
zidovudine | HIV | HPLC-UV, 265 nm ion-pair | plasma | 57.6–2880 ng/ml r > 0.999 | lamivudine nevirapine | 29 |
amphotericin B | antifungal, antibiotic | HPLC-UV, 405 nm | plasma | 0.5-5.0 μg/ml 0,005–0.5 μg/ml r>0.999 | liposomal amphotericin B amphotericin B colloidal dispersion | 26 |
praziquantal | trematodes, cestodes schistosomiasis | HPLC-UV, 217 nm | plasma | 100–2000 ng/ml r = 0.999 | | 13 |
clobazam | anticonvulsant epilepsy | HPLC-UV, 235 nm | plasma | 0–500 ng/m1 r = 0.9995 | | 27 |
linezolid | antibacterial agent | HPLC-UV, 254 nm | serum | 0–30 mg/1 r = 0.999 | | |
carbamazepine | epileptic seizures trigeminal neuralgia psychiatric disorder | HPLC-UV, 237 nm | plasma | 0.5–15.0 μg/ml r = 0.9990 | 10,11-dihydro-10,11-dihydroxy-carbamazepine,10,11-dihydro-10,11-epioxycarbamazepin, etc. | 28 |
ketorolac | NSAID, analgesic efficiacy | HPLC-UV, 313 nm | plasma | 0.05–10.0 μg/ml r2 = 0.998 | | 25 |
loratadine | antihistamine, urticaria, allergic rhinitis | HPLC-UV, 200 nm | plasma | 0.5–50 ng/ml r > 0.999 | | 18 |
risperidone | antipsychotics, symptoms of schizophrenia | HPLC-UV, 278 nm | plasma | 5–100 ng/ml r = 0.998 | 9-hydroxy-risperidone | 14 |
erthromycin | antibiotics, bacterial infections | HPLC-UV, 236 nm HPLC-ED | plasma, tissues (animals) milk (cow) | 0.25–20 μg/ml (plasma) 0.125–10 μg/ml (fat, liver, muscle, kidney) 0.025–2.0 μg.ml (milk) r>0.98 | | 15 |
carboplatin | antineoplastic | HPLC-UV, 230 nm HPLC-UV, 290 nm (post-column) | plasma | 0.05–40 mg/ml r2>0.999 | | 5 |
omeprazole | gastric ulcer | HPLC-UV, 302 nm | plasma | 5–500 ng/ml r=0.993 | | 20 |
cefepine | empirical antibiotic, | HPLC-UV, 263 nm | serum | 0.5–200 μg/ml | cefpirome | 31 |
rifampicin | tuberculosis | HPLC-UV, 254 nm | urine, plasma | 2–20 μg/ml r>0.999 | desacetylrifampicin, rifapentine | 6 |
indinavir | HIV, protese inhibitor | HPLC-UV, 210 nm | plasma | 25–2500 ng/ml r2>0.99 | | 23 |
ampicillin | chemotherapy | HPLC-UV, 220 nm | serum | 0.19–9.41 μg/ml r = 0.999 | | 50 |
metformin | diabetes NIDM | HPLC-UV, 232 nm | plasma | 0.1–40 mg/ml r = 1.000 | | 30 |
paclitaxel | cancer, malignances | HPLC-UV, 230 nm | plasma | 10–500 ng/ml r = 0.9998 | | 16 |
vancomycin | antibiotic, gram-positive bacteria | HPLC-UV, 282 nm FPIA (flourescence polarization immunoassay | plasma, tissues sternum | 0.5–75 mg/ml r = 0.9966 | | 22 |
carbamazepine | antiepileptic, tonic-colonic seizure | HPLC-UV, 210 nm | plasma | 0–12 mg/ml r = 0.9998 | carbamazepine-10,11-epoxide | 10 |
cisplatin | anticancer, solid tumors | HPLC-UV, 210 nm | plasma | 60–600 nM r>0.994 | monohydrated cisplatin | 7 |
gentamicins C1 | antimicrobial, infections | HPLC-UV, 365 pre-column | plasma, urine | 0–50 mg/l r2 = 0.999 | gentamicin Cla gentamicin C2 | 3 |
viriconazole | antifungal | HPLC-UV automated, direct injection column-switching | plasma | 10–3000 ng/ml r = 0.9985 | UK-115794(II) (IS) | 33 |
meropenem | antibiotic, respiratory infection | HPLC-UV, 296 nm direct injection column swithcing | serum, bronchial secretions | 0.5–40 μg/ml r2=0.9993 | ceftazidime | 34 |
thiacetazone | tuberculosis, ribonucreotide reductase inactivator | HPLC-UV, 322 nm direct injection ISRP column | plasma, (human, rat) | 0.17–2.8 μg/ml r2 = 0.9998 | | 35 |
propafenone | supraventricular and ventricular arrhytmias | HPLC-UV, 246 direct inhection column switching | serum | 0.025–4 μg/ml r = 0.998 | 5-hydroxypropafenone, LU46532 (IS) | 37 |
propentofyline | glutamate release inhibitor | HPLC-UV, 270 nm direct injection solumn switching | serum (human, rat) | 1–100 nmol/ml r = 1.000 (humna) r = 0.999 (rat) | A720287, A802751, A802831 | 39 |
celecoxib | COX-2 inhibitor, NSAID, inflammation, pain | HPLC-UV, 260 nm normal-phase column column switching | plasma | 25–2000 ng/ml | analogue of celecoxib (IS) | 21 |
aceclofenac | NSAID, analgesic | HPLC-UV, 278 nm direct... |
EPUB (Adobe DRM)Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.