Advances in Imaging and Electron Physics (eBook)
320 Seiten
Elsevier Science (Verlag)
978-0-08-096158-3 (ISBN)
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. This particular volume presents several timely articles on the scanning transmission electron microscope. - Updated with contributions from leading international scholars and industry experts- Discusses hot topic areas and presents current and future research trends- Provides an invaluable reference and guide for physicists, engineers and mathematicians
Front Cover 1
Advances in Imaging Andelectron Physics: Cold Field Emission and the Scanning Transmission Electron Microscope 4
Copyright 5
Contents 6
Preface 12
Contributors 16
Future Contributions 18
Chapter 1: The Work of Albert Victor Crewe on the Scanning Transmission Electron Microscope and Related Topics 22
1 Introduction 23
2 Some Chicago Aberrations: A Personal Collection 27
Acknowledgments 34
3 Electron Microscope Studies: Achievements of the Crewe Lab 34
Introduction 35
Construction (Reference Group A) 37
Source Development (Reference Group B) 38
STEM Development and Atomic Images (Reference Group C) 39
The Field Emission SEM (Reference Group D) 40
Energy Loss and Radiation Damage (Reference Group E) 41
Secondary Electron Production (Reference Group F) 42
DNA Labeling (Reference Group G) 42
Nucleosomes (Reference Group H) 43
Attempts at Aberration Correction (Reference Group I) 44
Theoretical Electron Optics (Reference Group J) 48
Optimization and the Super-High-Resolution SEM (Reference Group K) 49
Image Processing (Reference Group L) 51
Three-Dimensional Reconstruction (Reference Group M) 52
Hemoglobin Work (Reference Group N) 53
References (of Chicago Aberrations) 58
References (of DOE Report) 59
Chapter 2: A Review of the Cold-Field Electron Cathode 84
1 Introduction 84
2 Work Function 86
3 Energy Distribution 88
3.1. Theoretical Background 88
3.2. Analytical versus Numerical Results 89
3.3. Measured Values of the FWHM for the Tungsten Cold-Field Electron 93
4 Source Optics 100
5 Column Optics Using the Cold-Field Electron Source 103
6 Current Stability 107
6.1. High-Frequency Current Fluctuations 108
6.2. Long-Term Current Drift 109
6.3. Cold-Field Electron End-of-Life Mechanisms 115
7 Summary 118
Acknowledgments 119
References 119
Chapter 3: History of the STEM at Brookhaven National Laboratory 122
1 Introduction 122
2 Instrument Design Parameters 123
3 Heavy Metal Cluster Labeling 127
4 Early User/Collaborator Projects 129
5 Recent Work 136
6 Conclusion 136
Acknowledgments 136
References 137
Chapter 4: Hitachi's Development of Cold-Field Emission Scanning Transmission Electron Microscopes 144
1 Introduction 145
2 The Dawn of Hitachi Electron Microscopes (by Hiromi Inada) 146
2.1. Crewe STEM Shock and Field Emission Development 146
3 Cold FE-SEM Studies and Expansion to Different Fields 149
3.1. CFE-STEM Development at HCRL 149
3.2. CFE-SEM Development at Naka Works 152
3.3. Studies of Field Emission Stability 153
4 Expansion of High-Voltage TEMs and STEMs 158
4.1. Holography Studies by Tonomura with FE-TEMs 158
4.2. Multistage Acceleration CFEG for TEM Applications 159
4.3. Commercialized Analytical CFE-TEM/STEM 160
5 Development of 50-kV STEM in 1970s (by Shigeto Isakozawa) 162
5.1. Development of Hitachi’s 50kV Prototype CFE-STEM 162
5.2. Bright-Field Images Obtained with 50-kV CFE-STEM 163
5.3. Single-Atom Observation 165
5.4. Development of the Electron Energy-Loss Spectrometer 168
5.5. Further Development of 50-kV CFE-STEM 170
6 Hitachi's First Commercialized Dedicated STEM (by Takahito Hashimoto) 171
6.1. 200-kV Analytical CFE-TEM, HF-2000 171
6.2. ‘‘Gate Viewer,’’ Trigger for Dedicated STEM 175
6.3. Novel Functions for HD Series 182
7 Cutting-Edge Applications with Customized HD Models (by Toshie Yaguchi) 186
7.1. 120-kV FE UHV for Nanotubes 186
7.2. 200-kV FE Ultrahigh-Resolution STEM 186
7.3. 3D Structural and Elemental Analysis 190
8 Aberration-Corrected CFE-STEM (by Kuniyasu Nakamura) 191
8.1. Atomic-Level Characterization Instrument 191
8.2. Theoretical Consideration of Advantages of Aberration-Corrected CFE-STEM 193
8.3. Evaluation of Aberration-Corrected CFE-STEM 194
8.4. Advanced Application Results with HD-2700C 197
9 Conclusion and Future Prospective (by Hiroshi Kakibayashi) 202
Acknowledgments 203
References 203
Chapter 5: Two Commercial STEMs:
208
1 Introduction 209
2 The AEI STEM-1 209
3 The Siemens ST100F 212
3.1. The New ELMISKOP ST100F Scanning Transmission Electron Microscope 216
Introduction 216
Construction of the ELMISKOP ST100F 216
Advantages of the Scanning Transmission Electron Microscope 219
Imaging with Low Radiation Damage 219
Conclusion 222
3.2. Image Forming Systems 224
General Remarks 224
The Imaging Process 225
Image Forming Properties of Magnetic Lenses 226
Strong Lenses 229
Lens Systems for CTEM and STEM: Similarities and Differences 231
Requirements for Analytical Microscopy 236
Acknowledgments 238
References 238
Chapter 6: A History of Vacuum Generators' 100-kV Scanning Transmission Electron Microscope 242
1 The Early Days 243
2 Design Considerations for a Commercial STEM 245
2.1. The Objective Lens 246
2.2. The Specimen Stage 246
2.3. The Electron Gun 247
2.4. Location of Analytical Facilities 247
2.5. The Resultant Assembly 248
3 The First STEMs and HB5 Development 248
3.1. The Optical Column 253
3.2. Stage Development 259
3.3. Early Airlock and Manipulator 261
3.4. The Dark-Field Detector 262
3.5. Secondary Electron Detector 266
3.6. Diffraction Facilities 267
3.7. The Energy Analyzer Mk1 270
3.8. Electronics 272
4 Improved Resolution 275
4.1. The MIT HB5 275
4.2. The University of Illinois HB5 276
5 Other Developments 277
5.1. Beam-Blanking Plates 277
5.2. Detectors and the Virtual Objective Aperture 278
5.3. Stage Motor Drives 282
5.4. New Airlock 283
5.5. Energy Analyzer Mk2 285
5.6. Gun Lens 287
5.7. High-Excitation Objective Lens 287
6 Stages and Cartridges 289
6.1. Basic Cartridges 289
6.2. Beryllium Cartridges 290
6.3. Cold Stage 290
6.4. Cryo-Transfer System 291
7 The HB501 292
7.1. General Development 292
7.2. HB501UX and High-Resolution Imaging 294
8 Special and Variant Instruments 294
8.1. University of Glasgow’s HB5 296
8.2. The HB501A 297
9 The HB601 299
10 Postscript 301
Acknowledgments 303
References 304
Chapter 7: Development of the 300-kV Vacuum Generator STEM (1985-1996) 308
1 Prelude in Oxford (1973-1975) 309
2 The MIDAS Project (1985-1988) 309
2.1. System 310
2.2. Gun Lens 310
2.3. Objective Lens 311
2.4. Side-Entry Stage 312
2.5. MIDAS Performance 312
3 The HB603 300-kV STEM instruments 313
3.1. The Prototype Design Phase 314
4 MIT and ANL Designs 326
5 Oak Ridge Design 328
6 Lehigh Design 331
7 Testing, Testing 332
8 Record-Breaking Results 337
8.1. Source Brightness 337
8.2. Energy Spread 337
8.3. ADF Resolution 337
8.4. X-Ray Microanalysis 338
9 Conclusions 341
Acknowledgments 342
References 343
Chapter 8: On the High-Voltage STEM Project in Toulouse (MEBATH) 346
1 Introduction 346
2 The Building 349
3 Generator 354
4 The Column 357
4.1. The Source 357
4.2. Accelerating Tube 363
4.3. Lenses 367
4.4. Spectrometers 369
5 Suspension of the Platform and the Microscope 370
6 Recording of The Signal 372
7 Conclusions 373
Acknowledgments 373
References 374
Chapter 9: Scanning Transmission Electron Microscopy 378
1 Introduction 379
2 Image Formation 380
3 Imaging Thin Sections 384
4 Imaging Negatively Stained Samples 386
5 Mass Measurements Using the Basel STEM 387
6 Specific Examples of STEM Imaging and Mass Measurements 394
7 High-Throughput Visual Proteomics 399
8 Conclusions and Perspectives 401
Acknowledgments 403
References 403
Chapter 10: STEM at Cambridge University: Reminiscences and Reflections
408
1 STEM as a Diagnostic Tool for SEM 408
2 The Observation of Specimens in Water Vapor by Means of STEM 414
9.5 Observation of Specimens in Water Vapour 414
3 High-Voltage STEM Using a Single-Field Condenser-Objective Lens 421
References 426
Contents of Volumes 151-158 428
Index 432
Erscheint lt. Verlag | 5.11.2009 |
---|---|
Mitarbeit |
Herausgeber (Serie): Peter W. Hawkes |
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber |
Mathematik / Informatik ► Informatik | |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
Naturwissenschaften ► Physik / Astronomie ► Elektrodynamik | |
Technik ► Bauwesen | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
ISBN-10 | 0-08-096158-4 / 0080961584 |
ISBN-13 | 978-0-08-096158-3 / 9780080961583 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich