Quantum Geometry, Matrix Theory, and Gravity - Harold C. Steinacker

Quantum Geometry, Matrix Theory, and Gravity

Buch | Hardcover
420 Seiten
2024
Cambridge University Press (Verlag)
978-1-009-44078-3 (ISBN)
74,80 inkl. MwSt
The volume provides an introduction to quantization in a broad context, and a systematic development of quantum geometry in Matrix Theory and string theory. It addresses advanced students and researchers in theoretical physics and mathematics, who are interested in quantum aspects of space-time and geometry in a physical context.
Building on mathematical structures familiar from quantum mechanics, this book provides an introduction to quantization in a broad context before developing a framework for quantum geometry in Matrix Theory and string theory. Taking a physics-oriented approach to quantum geometry, this framework helps explain the physics of Yang–Mills-type matrix models, leading to a quantum theory of space-time and matter. This novel framework is then applied to Matrix Theory, which is defined through distinguished maximally supersymmetric matrix models related to string theory. A mechanism for gravity is discussed in depth, which emerges as a quantum effect on quantum space-time within Matrix Theory. Using explicit examples and exercises, readers will develop a physical intuition for the mathematical concepts and mechanisms. It will benefit advanced students and researchers in theoretical and mathematical physics, and is a useful resource for physicists and mathematicians interested in the geometrical aspects of quantization in a broader context.

Harold Steinacker is senior scientist at the University of Vienna. He obtained his Ph.D. in physics at the University of California at Berkeley, and has held research positions at several universities. He has published more than 100 research papers, contributing significantly to the understanding of quantum geometry and matrix models in fundamental physics.

Preface; The trouble with spacetime; Quantum geometry and Matrix theory; Part I. Mathematical Background: 1. Differentiable manifolds; 2. Lie groups and coadjoint orbits; Part II. Quantum Spaces and Geometry: 3. Quantization of symplectic manifolds; 4. Quantum spaces and matrix geometry; 5. Covariant quantum spaces; Part III. Noncommutative field theory and matrix models: 6. Noncommutative field theory; 7. Yang–Mills matrix models and quantum spaces; 8. Fuzzy extra dimensions; 9. Geometry and dynamics in Yang–Mills matrix models; 10. Higher-spin gauge theory on quantum spacetime; Part IV. Matrix Theory and Gravity: 11. Matrix theory: maximally supersymmetric matrix models; 12. Gravity as a quantum effect on quantum spacetime; 13. Matrix quantum mechanics and the BFSS model; Appendixes; References; Index.

Erscheinungsdatum
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Quantenphysik
ISBN-10 1-009-44078-0 / 1009440780
ISBN-13 978-1-009-44078-3 / 9781009440783
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine Einführung in die Welt der Wellen und Wahrscheinlichkeiten

von Holger Göbel

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
59,95
Grundlegende Vorstellungen und Begriffe

von Thomas Görnitz

Buch | Softcover (2022)
Hanser, Carl (Verlag)
39,99