Optical and SAR Remote Sensing of Urban Areas - Courage Kamusoko

Optical and SAR Remote Sensing of Urban Areas (eBook)

A Practical Guide
eBook Download: PDF
2021 | 1st ed. 2022
XI, 119 Seiten
Springer Singapore (Verlag)
978-981-16-5149-6 (ISBN)
Systemvoraussetzungen
60,98 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book introduces remotely sensed image processing for urban areas using optical and synthetic aperture radar (SAR) data and assists students, researchers, and remote sensing practitioners who are interested in land cover mapping using such data. There are many introductory and advanced books on optical and SAR remote sensing image processing, but most of them do not serve as good practical guides. However, this book is designed as a practical guide and a hands-on workbook, where users can explore data and methods to improve their land cover mapping skills for urban areas. Although there are many freely available earth observation data, the focus is on land cover mapping using Sentinel-1 C-band SAR and Sentinel-2 data. All remotely sensed image processing and classification procedures are based on open-source software applications such QGIS and R as well as cloud-based platforms such as Google Earth Engine (GEE).

The book is organized into six chapters. Chapter 1 introduces geospatial machine learning, and Chapter 2 covers exploratory image analysis and transformation. Chapters 3 and 4 focus on mapping urban land cover using multi-seasonal Sentinel-2 imagery and multi-seasonal Sentinel-1 imagery, respectively. Chapter 5 discusses mapping urban land cover using multi-seasonal Sentinel-1 and Sentinel-2 imagery as well as other derived data such as spectral and texture indices. Chapter 6 concludes the book with land cover classification accuracy assessment.




Courage Kamusoko is an independent geospatial consultant based in Japan. His expertise includes land use and cover change modeling, and the design and implementation of geospatial database management systems. His primary research involves analyses of remotely sensed images, land use and cover modeling, and machine learning. In addition to his focus on geospatial research and consultancy, he has dedicated his time to teaching practical machine learning for geospatial analysis and modeling. Recently, he published the book Remote Sensing Image Classification in R (Springer).


This book introduces remotely sensed image processing for urban areas using optical and synthetic aperture radar (SAR) data and assists students, researchers, and remote sensing practitioners who are interested in land cover mapping using such data. There are many introductory and advanced books on optical and SAR remote sensing image processing, but most of them do not serve as good practical guides. However, this book is designed as a practical guide and a hands-on workbook, where users can explore data and methods to improve their land cover mapping skills for urban areas. Although there are many freely available earth observation data, the focus is on land cover mapping using Sentinel-1 C-band SAR and Sentinel-2 data. All remotely sensed image processing and classification procedures are based on open-source software applications such QGIS and R as well as cloud-based platforms such as Google Earth Engine (GEE).The book is organized into six chapters. Chapter 1 introduces geospatial machine learning, and Chapter 2 covers exploratory image analysis and transformation. Chapters 3 and 4 focus on mapping urban land cover using multi-seasonal Sentinel-2 imagery and multi-seasonal Sentinel-1 imagery, respectively. Chapter 5 discusses mapping urban land cover using multi-seasonal Sentinel-1 and Sentinel-2 imagery as well as other derived data such as spectral and texture indices. Chapter 6 concludes the book with land cover classification accuracy assessment.
Erscheint lt. Verlag 2.12.2021
Reihe/Serie Springer Geography
Springer Geography
Zusatzinfo XI, 119 p. 103 illus., 90 illus. in color.
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Naturwissenschaften Geowissenschaften Geografie / Kartografie
Sozialwissenschaften Politik / Verwaltung
Schlagworte Geospatial machine learning • Land Cover Mapping • Optical and synthetic aperture radar (SAR) data • Robust classification accuracy assessment • urban remote sensing
ISBN-10 981-16-5149-3 / 9811651493
ISBN-13 978-981-16-5149-6 / 9789811651496
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
50,39
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
43,19
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
32,39