Photoreceptors and Calcium -

Photoreceptors and Calcium

Buch | Hardcover
625 Seiten
2003
Kluwer Academic/Plenum Publishers (Verlag)
978-0-306-47415-6 (ISBN)
246,09 inkl. MwSt
Focuses on the status of Ca2+ ions in regulation of phototransduction, light adaptation and the recovery phase in vertebrate photoreceptors. This book emphasises on Ca2+-binding proteins and their targets, among them particulate guanylate cyclases, GPCR-coupled kinases and cyclic nucleotide-gated cation channels.
2 The role of Ca+ as an internal messenger in visual transduction of vertebrate and invertebrate organisms has been explored intensely in the recent past. Since the 2 early 1970s, calcium ions and cyclic GMP (whose levels are controlled by Ca+ in vertebrates) have been recognized as important second messengers. Particularly in 2 the last decade, however, the role of Ca+ in visual transduction has been re-evalu- ated and a proliferation of research has documented a multiplicity of roles. 2 It is now evident that Ca+ modulates phototransduction by acting at several 2 sites through a host of small Ca+ -binding proteins. For example, in phototransduction 2 of vertebrates, Ca+-free forms of guanylate cyclase activating proteins (GCAPs) activate guanylate cyclase, modulating levels of cOMP, a key event in the return of photoreceptors to pre-bleach conditions. Defects in genes encoding guanylate cy- clase or guanylate cyclase activating proteins lead to severe diseases of the retina (e. g. , Leber congenital amaurosis, rod/cone dystrophy, or cone dystrophy), thus em- phasizing the important role of these proteins in phototransduction.
Similarly, mu- 2 tant genes encoding cation or Ca+ channels (cyclic nucleotide-gated cation chan- 2 nels located in the cell membrane and L-type voltage-gated Ca+ channels located at the synapse of photo receptors) lead to retinitis pigmentosa or congenital stationary night blindness. In phototransduction of invertebrate organisms (e. g. , Drosophila 2 and Limulus), the role of Ca+ is similarly central, but distinct, from that of vertebrates.

1. Calcium and Phototransduction.- 2. The Calcium Gradient Along the Rod Outer Segment.- 3. The Time Course of Light Adaptation in Vertebrate Retinal Rods.- 4. S-Modulin.- 5. Ca2+-Dependent Control of Rhodopsin Phosphorylation: Recoverin and Rhodopsin Kinase.- 6. Recoverin and Rhodopsin Kinase.- 7. Pathological Roles of Recoverin in Cancer-Associated Retinopathy.- 8. Rgs9-1 Phosphorylation and Ca2+.- 9. Phosphorylation by Cyclin-Dependent Protein Kinase 5 of the Regulatory Subunit (p?) of Retinal Cgmp phosphodiesterase (pde6): its Implications in Phototransduction.- 10. Centrins, Anovel Group of Ca2+-Binding Proteins in Vertebrate Photoreceptor Cells.- 11.Tuning Outer Segment Ca2+Homeostasis to Phototransduction in Rods and Cones.- 12. Regulation of the Rod Photoreceptor Cyclic Nucleotide-Gated Channel.- 13. Ca2+-Channels in the Rpe.- 14. THE RETINAL ROD AND CONE Na+/Ca2+-K+EXCHANGERS.- 15.THE COMPLEX OF cGMP-GATED CHANNELAND Na+/Ca2+-K+EXCHANGER IN ROD PHOTORECEPTORS.- 16. Regulation of Voltage-8Ensitive Ca2+Channels in Bipolar Cells by Divalent Cations and Polyamines.- 17. Site-Directed and Natural Mutations in Studying Functional Domains in Guanylyl Cyclase Activating Proteins (Gcaps).- 18. Calmodulin and Ca2+-Binding Proteins (Cabps): Variations on Atheme.- 19. GCAPs: Ca2+-SENSITIVE REGULATORS OF retGC.- 20. Structure and Membrane-Targeting Mechanism of Retinal Ca2+-Binding Proteins, Recoverin and Gcap-2.- 21. Target Recognition of Guanylate Cyclase by Guanylate Cyclase-Activating Proteins.- 22. Mouse Models to Study Gcap Functions in Intact Photoreceptors.- 23. Calcium-Dependent Activation of Guanylate Cyclase by S100b.- 24. The Role of Cadherins in Ca2+-Mediated Cell Adhesion and Inherited Photoreceptor Degeneration.- 25. Guanylate Cyclase Activating Proteins,Guanylate Cyclase and Disease.- 26. Using Mutant Mice to Study the Role of Voltage-Gated Calcium Channels in the Retina.- 27. Caldendrins in the Inner Retina.- 28. Calcium Channels at the Photoreceptor Synapse.- 29. On Bipolar Cells: Following in the Footsteps of Phototransduction.- 30. Ca2+Regulation of Drosophila Phototransduction.- 31. Simultaneous Roles for Ca2+in Excitation and Adaptation of Limulus Ventral Photoreceptors.- 32. Calcium Homeostasis in Fly Photoreceptor Cells.- 33. Photoreceptor Degeneration and Ca2+Influx Through Light-Activated Channels of Drosophila.- 34. The Trp Calcium Channeland Retinal Degeneration.

Erscheint lt. Verlag 31.1.2003
Reihe/Serie Advances in Experimental Medicine and Biology ; 514
Zusatzinfo XXVIII, 625 p.
Sprache englisch
Maße 178 x 254 mm
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete
Studium 2. Studienabschnitt (Klinik) Humangenetik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
ISBN-10 0-306-47415-8 / 0306474158
ISBN-13 978-0-306-47415-6 / 9780306474156
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine sehr persönliche Geschichte | Der New York Times-Bestseller

von Siddhartha Mukherjee

Buch | Softcover (2023)
Ullstein Taschenbuch Verlag
21,99
Die revolutionäre Medizin von morgen (Lifespan)

von David A. Sinclair; Matthew D. LaPlante

Buch | Softcover (2020)
DuMont Buchverlag
16,00