Fire Retardancy Behavior of Polymer/Clay Nanocomposites (eBook)
XXXII, 165 Seiten
Springer Singapore (Verlag)
978-981-10-8327-3 (ISBN)
This thesis investigates the early ignition behavior of polymer/clay nanocomposites, which are perceived as potential eco-friendly flame retardant systems. It examines the correlation between clay structural chemistry and high-temperature transformations with clay-assisted decomposition of organic macromolecules. In particular, it investigates the unique effects of metal ions like Mg2+, Al3+ and Fe3+ that are inherent in clays (smectite) on the combustion and thermo-oxidative decomposition of polyamide 6. The results indicate that metal ions present on/in montmorillonite platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 thermal decomposition. Lastly, a simple solution in the form of a physical coating on clay surface is proposed, based on the role of polymer-clay interfacial interaction.
With a childhood dream of becoming an engineer by profession, Indraneel completed his Bachelor's degree in Polymer Engineering from Maharashtra Institute of Technology, affiliated with University of Pune, India in 2003 and was a recipient of prestigious Shri Siddhivinayak Gold Medal for achieving first rank in Polymer Engineering. He later went on to attain his Master's degree in Materials Science & Engineering from the Rochester Institute of Technology, USA in 2011. His PhD degree from School of Materials Science & Engineering, Nanyang Technological University, Singapore under the guidance of Asst. Professor Aravind Dasari earned him MSE Best PhD Thesis Award, Class of 2017. Upon completion of PhD, he continued to work as a post-doctoral fellow in Nanyang Technological University. His research interests include polymer structure-property relationship and product development. As of Dec 2017, he holds four Technology Disclosures and one Patent-pending invention. He has authored five first-author journal articles and one book chapter.
This thesis investigates the early ignition behavior of polymer/clay nanocomposites, which are perceived as potential eco-friendly flame retardant systems. It examines the correlation between clay structural chemistry and high-temperature transformations with clay-assisted decomposition of organic macromolecules. In particular, it investigates the unique effects of metal ions like Mg2+, Al3+ and Fe3+ that are inherent in clays (smectite) on the combustion and thermo-oxidative decomposition of polyamide 6. The results indicate that metal ions present on/in montmorillonite platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 thermal decomposition. Lastly, a simple solution in the form of a physical coating on clay surface is proposed, based on the role of polymer-clay interfacial interaction.
With a childhood dream of becoming an engineer by profession, Indraneel completed his Bachelor’s degree in Polymer Engineering from Maharashtra Institute of Technology, affiliated with University of Pune, India in 2003 and was a recipient of prestigious Shri Siddhivinayak Gold Medal for achieving first rank in Polymer Engineering. He later went on to attain his Master’s degree in Materials Science & Engineering from the Rochester Institute of Technology, USA in 2011. His PhD degree from School of Materials Science & Engineering, Nanyang Technological University, Singapore under the guidance of Asst. Professor Aravind Dasari earned him MSE Best PhD Thesis Award, Class of 2017. Upon completion of PhD, he continued to work as a post-doctoral fellow in Nanyang Technological University. His research interests include polymer structure-property relationship and product development. As of Dec 2017, he holds four Technology Disclosures and one Patent-pending invention. He has authored five first-author journal articles and one book chapter.
Supervisor’s Foreword 6
Abstract 7
List of Journal Publications 9
List of Book Chapters 9
List of Oral Presentations 9
List of Poster Presentations 10
Acknowledgements 11
Statement of Originality 13
Contents 14
List of Figures 17
List of Tables 24
List of Schemes 26
Abbreviations 28
1 Introduction 30
1.1 Overview 30
1.2 Motivation and Research Objectives 31
1.3 Research Hypothesis and Scope 36
1.4 Novel Findings and Outcomes 38
1.5 Thesis Organization 38
References 39
2 Literature Review 41
Abstract 41
2.1 Fire Hazards: Need of Fire Retardancy 41
2.2 Fire and Combustion 42
2.2.1 Fundamental Combustion Mechanism 42
2.2.2 Stages of Fire 44
2.3 Fire Retardant Systems 44
2.3.1 Classification of Fire Retardants 45
2.3.2 Different Fire Retardant Systems 46
2.3.2.1 Halogen-Based Systems 46
2.3.2.2 Phosphorous-Based Systems 47
2.3.2.3 Metal Hydroxides and Metal Carbonates 48
2.3.2.4 Melamine-Based Systems 48
2.3.2.5 Intumescent Systems 49
2.3.3 Eco-Benign Fire Retardant Systems 49
2.4 Structural Chemistry of Clays 50
2.5 Polymer/Clay Nanocomposites 51
2.6 Influence of Clay on Thermal Decomposition of Polymer—Overview 52
2.7 Fire Retardancy Aspects for Polymer/Clay Nanocomposites 54
2.7.1 Time-to-Ignition 54
2.7.1.1 Decomposition of Organic Surfactant 54
2.7.1.2 Catalytic Activity of Clay 55
2.7.2 Migration of Filler 57
2.7.3 Char Formation 59
2.7.3.1 Confinement Effect by Clay 59
2.7.3.2 Catalytic Activity of Clay 60
2.7.4 Smoke Characteristics 62
2.8 Summary 63
References 64
3 Experimental Methodology 68
Abstract 68
3.1 Material Selection—Rationale 68
3.2 Material Preparation 70
3.2.1 Preparation of Metal-Ion Exchanged Clays 70
3.2.2 Organic Modification of Clays 70
3.2.3 Preparation of Coated Clays 71
3.2.3.1 Polyetherimide Coated Clay 71
3.2.3.2 Polyimide Coated Clay 71
3.2.4 Extrusion 72
3.3 Testing Methods 73
3.3.1 Cone Calorimeter 73
3.3.2 Thermogravimetric Analyzer Coupled with Infrared Spectrometer 76
3.3.3 Isothermal Studies Using Furnace 77
3.4 Characterization Techniques 79
3.4.1 Inductively Coupled Plasma Atomic Emission Spectrometer 79
3.4.2 CHNS Elemental Analyzer 80
3.4.3 Fourier Transform Infrared Spectrometer 80
3.4.4 X-Ray Diffraction Spectrometer 81
3.4.5 Differential Scanning Calorimeter 82
3.4.6 Scanning Electron Microscope 83
3.4.7 Transmission Electron Microscope 84
References 85
4 Decomposition Behavior of Metal-Ion Exchanged Clays 87
Abstract 87
4.1 Introduction 87
4.2 Results and Discussion 89
4.2.1 Structural Aspects of MI-Clays and OMI-Clays 89
4.2.2 Quantitative Analysis for Metal Concentrations in Exchanged Clays 91
4.2.3 Thermal Decomposition 92
4.2.3.1 Thermal Decomposition of MI-Clays 92
4.2.3.2 Thermal Decomposition of OMI-Clays 94
4.2.4 Spectroscopic Analysis of MI-Clays and OMI-Clays Residues 99
4.2.4.1 Fourier Transform Infrared Spectroscopy 99
4.2.4.2 X-Ray Diffraction Spectroscopy 103
4.3 Summary 106
References 107
5 Thermo-oxidative Decomposition Behavior of Polyamide 6 Nanocomposites with Metal-Ion Exchanged Clays 109
Abstract 109
5.1 Introduction 109
5.2 Results and Discussion 110
5.2.1 Crystal Phase and Microstructure 110
5.2.2 Combustion Properties 115
5.2.3 Thermo-oxidative Decomposition Behavior 119
5.2.4 Condensed Phase Analysis 122
5.2.4.1 Isothermal Study Between 325 and 475 °C 122
5.2.4.2 Isothermal Study at 750 °C 124
5.2.5 Gas Phase Analysis 127
5.2.5.1 Condensate Study at 500 °C 127
5.2.5.2 TG-IR Analysis 128
5.2.6 Thermo-oxidative Decomposition Mechanism 133
5.3 Summary 134
References 135
6 Thermo-oxidative Decomposition Behavior of Polyamide 6 Nanocomposites with Structurally Different Clays 137
Abstract 137
6.1 Introduction 137
6.2 Results and Discussion 139
6.2.1 Structural Analysis of Different Clays and Organic Modification of Clays 139
6.2.2 Thermal Decomposition of Clays 140
6.2.3 Thermal Decomposition of Organically Modified Clays 142
6.2.4 Residue Analysis for Nontronite Clays 144
6.3 PA6/Clay Nanocomposites 146
6.3.1 Combustion Properties 146
6.3.2 Thermo-oxidative Decomposition Behavior 151
6.3.3 Condensed Phase Analysis 155
6.3.3.1 Isothermal Study at 400 °C 155
6.3.3.2 Isothermal Study at 500 and 750 °C 156
6.3.4 Gas Phase Analysis—Condensate Study at 500 °C 159
6.3.5 Thermo-oxidative Decomposition Mechanism 160
6.4 Summary 163
References 163
7 Controlling the Interfacial Interactions Between Clay and Host Polyamide 6 Matrix 165
Abstract 165
7.1 Introduction 165
7.2 Results and Discussion 166
7.2.1 Clay Coating Analysis 166
7.2.2 Decomposition Behavior of Coated Clays 168
7.2.3 Combustion Properties 169
7.2.4 Thermo-oxidative Decomposition Behavior 172
7.3 Summary 173
References 173
8 Clay Catalysis and Fire Retardancy of Polymer/Clay Nanocomposites: A Complete Overview 174
Abstract 174
8.1 General Discussion 174
8.1.1 Importance of Thermo-oxidative Study 174
8.1.2 Metal-Ion Influenced Clay Catalysis 176
8.1.3 Supporting Experiments 178
8.1.3.1 Ripidolite Experiment 178
8.1.3.2 Confinement Effect—Validation 179
8.2 Conclusions 180
8.3 Future Work 181
References 183
Appendix A: Auxiliary Details 184
Erscheint lt. Verlag | 16.5.2018 |
---|---|
Reihe/Serie | Springer Theses | Springer Theses |
Zusatzinfo | XXXII, 165 p. 95 illus., 78 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik ► Maschinenbau | |
Wirtschaft | |
Schlagworte | Auto-transformation • Clay Catalysis • Clay Structural Chemistry • Metal-ion Exchanged Clays • Nanocomposite Combustion Behaviour • Organically Modified MI-clays (OMI-clays) • Polyamide 6 Nanocomposites • Polyetherimide Coated Clay • Polyimide Coated Clay • Thermo-oxidative Decomposition |
ISBN-10 | 981-10-8327-4 / 9811083274 |
ISBN-13 | 978-981-10-8327-3 / 9789811083273 |
Haben Sie eine Frage zum Produkt? |
Größe: 8,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich