Biomass and Green Chemistry (eBook)

Building a Renewable Pathway

Sílvio Vaz Jr. (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2018
X, 252 Seiten
Springer International Publishing (Verlag)
978-3-319-66736-2 (ISBN)

Lese- und Medienproben

Biomass and Green Chemistry -
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book investigates the main vegetable biomass types, their chemical characteristics and their potential to replace oil as raw material for the chemical industry, according to the principles of green chemistry. Authors from different scientific and technical backgrounds, from industry and academia, give an overview of the state of the art and ongoing developments. Aspects including bioeconomy, biorefineries, renewable chemistry and sustainability are also considered, given their relevance in this context. Furthermore, the book reviews green chemistry principles and their relation to biomass, while also exploring the main processes for converting biomass into bioproducts.

The need to develop renewable feedstock for the chemical industry to replace oil has been identified as a major strategic challenge for the 21st century. In this context, the use of different types of vegetable biomass - starch, lignocellulosic, oleaginous, saccharide and algae - can be seen as a viable alternative to the use of non-renewable, more expensive raw materials. Furthermore, it offers a model for adding economic value to the agro industrial chains such as soybean, sugarcane, corn and forests, among others. This will in turn contribute to the sustainability of a wide range of chemicals, mainly organics and their transformation processes, which are widely used by modern society.



Prof. Dr. Sílvio Vaz Junior holds a BSc degree in Chemistry, a MSc degree in Physical Chemistry and a PhD degree in Analytical Chemistry from University of São Paulo, Brazil. He was director and partner of two private analytical laboratories related to environmental analysis technologies. Since 2010, he is a research scientist at the state-owned Brazilian Agricultural Research Corporation (Embrapa) working on the development of renewable chemicals from biomass and analytical chemistry applied to bioenergy and biomass chemistry. He is a member of IUPAC and has published articles and books related to renewable chemistry and analytical chemistry.

Prof. Dr. Sílvio Vaz Junior holds a BSc degree in Chemistry, a MSc degree in Physical Chemistry and a PhD degree in Analytical Chemistry from University of São Paulo, Brazil. He was director and partner of two private analytical laboratories related to environmental analysis technologies. Since 2010, he is a research scientist at the state-owned Brazilian Agricultural Research Corporation (Embrapa) working on the development of renewable chemicals from biomass and analytical chemistry applied to bioenergy and biomass chemistry. He is a member of IUPAC and has published articles and books related to renewable chemistry and analytical chemistry.

Preface 5
Contents 6
Contributors 8
Chapter 1: Biomass and the Green Chemistry Principles 10
1.1 Introduction 10
1.2 Exploring the Green Chemistry Principles in Biomass Conversion 15
1.3 Aspects of Industrial Ecology Related to Biomass Processing 15
1.4 Conclusions 17
References 18
Chapter 2: Saccharide Biomass for Biofuels, Biomaterials, and Chemicals 19
2.1 Introduction 19
2.2 Chemical Constitution and Physicochemical Properties of Saccharides 21
2.3 Economic Aspects: Global Production, Availability, and Distribution of Sucrose 22
2.4 Main Products: Considering Energy, Biofuels, Biomaterials, and Chemicals 24
2.4.1 Energetics Products 26
2.4.2 Nonenergetic Products 30
2.4.2.1 Bioplastics/Biopolymers 31
2.4.2.2 Biochemicals 35
2.5 Conclusions 36
References 37
Chapter 3: Oleaginous Biomass for Biofuels, Biomaterials, and Chemicals 39
3.1 Introduction 39
3.1.1 Oils and Fats 41
3.1.2 Fatty Acids Composition 43
3.2 Vegetable Oils as Biofuels 47
3.2.1 Vegetable Oil Micro-Emulsions 47
3.2.2 Vegetable Oil Cracking 48
3.2.3 Transesterification/Esterification 48
3.2.4 Biodiesel Production 50
3.2.4.1 Biodiesel Quality 50
3.2.4.2 Biodiesel Glycerin 52
3.2.5 Hydrotreating 52
3.3 Bio-Based Polymers 53
3.3.1 Functionalization of Vegetable Oils to Produce Bio-­Based Polymers 53
3.3.2 Vegetable Oil-Based Polymers 63
3.3.3 Analytical Techniques 64
References 70
Chapter 4: Starch Biomass for Biofuels, Biomaterials, and Chemicals 77
4.1 Introduction 78
4.2 Conventional and Novel Feedstocks for a Starch-Based Biorefinery 79
4.3 Thermoplastic Starch: Challenges and Properties 81
4.4 Enzymatic Hydrolysis of Starch-Based Feedstocks 83
4.5 Value-Added Biofuels, Biochemicals, and Biomaterials from a Sugar Platform Perspective 84
4.5.1 The Biological Route 87
4.5.1.1 Ethanol 87
4.5.1.2 Lactic Acid and Polylactic Acid (PLA) 89
4.5.1.3 Polyhydroxyalkanoates (PHAs) 91
4.5.1.4 Succinic Acid 92
4.5.1.5 1,4-Butanediol (BDO) 93
4.5.1.6 Farnesene 94
4.5.1.7 Isobutene 95
4.5.1.8 Acrylic Acid 95
4.5.1.9 Adipic Acid 96
4.5.1.10 Ethylene and Polyethylene (PE) 97
4.5.2 The Chemical Catalytic Route 98
4.5.2.1 Furan-2,5-Dicarboxylic Acid (FDCA) 98
4.6 Concluding Remarks 98
References 99
Chapter 5: Lignocellulosic Biomass for Energy, Biofuels, Biomaterials, and Chemicals 103
5.1 Introduction 104
5.1.1 Status Quo of Biorefinery Systems for Biomass Conversion 104
5.1.2 Consideration of Green Chemistry Principles 106
5.1.2.1 Lignocellulosic Feedstock for Energy Production 107
5.1.2.2 Lignocellulosic Feedstock for Biofuels Production 107
5.1.2.3 Lignocellulosic Feedstock for Biomaterials and Chemicals 109
5.2 Lignin as Agro-industrial Feedstock 110
5.2.1 Lignin Isolation Processes 111
5.2.1.1 Kraft Process 111
5.2.1.2 Organosolv Process 114
5.2.2 Structure Analysis of Lignin 115
5.2.2.1 Spectroscopy 115
5.2.2.2 Chromatography 119
5.2.2.3 Thermal Analysis 122
5.2.2.4 Microscopy and X-ray Techniques 123
5.2.3 Antioxidant Activity and Total Phenol Content of Lignin 125
5.2.4 Storage and Temperature Effects on Lignin Structure 126
5.3 Lignin Valorization and Potential Applications 128
5.3.1 Lignin-Based Polymer Blends, Composites, and Hydrogels 128
5.3.2 Composites Based on Lignin and Cellulose 129
5.3.3 Antimicrobial Activity of Lignin to Be Used in Biomedicine 131
5.3.4 Structure–Property Relationship: Effects of Resource, Purification, and Storage on Antioxidant and Antimicrobial Activity 132
5.3.5 Applications of Lignin-Based Polymers in Packaging 134
5.4 Conclusions 135
References 135
Chapter 6: Microalgae for Industrial Purposes 141
6.1 Introduction 141
6.2 What Are Algae? 142
6.3 Algae Produce Biomass Through Photolithotrophy, Heterotrophy, or Mixotrophy 144
6.3.1 Photolitothrophy 145
6.3.2 Mixotrophy 146
6.4 Cell Composition Results from a Combination of Genotypic and Environmental Constraints 147
6.4.1 Elemental Stoichiometry and Organic Cell Composition 147
6.5 Genetic Modification of Algae: Tools and Aims 148
6.6 How Are Algae Cultured? 151
6.6.1 Harvesting and Dehydration of Algal Biomass 153
6.7 Products and Applications 154
6.7.1 Biofuels from Algae 154
6.7.1.1 Biodiesel 155
6.7.1.2 Other Microalgal Biofuels 156
6.7.1.3 Challenges and Solutions for Algal Biofuel Production 157
6.8 Microalgae for Bioremediation 158
6.8.1 CO2 Fixation and Flue Gas Treatment 158
6.8.2 Wastewater Treatment by Microalgae Cultivation 160
6.9 Microalgal Cultivation for Food or Feed Production 162
6.10 Conclusions 164
References 164
Chapter 7: Enzymatic Conversion of First- and Second-­Generation Sugars 176
7.1 Introduction 177
7.2 Enzymatic Hydrolysis of Starch to Glucose 178
7.3 Enzyme Immobilization 179
7.3.1 Immobilization Via Cross-Linking: CLEAs 180
7.3.2 Advantages and Limitations of CLEAs 182
7.4 Magnetically Separable Immobilized Enzymes 182
7.5 Enzymatic Depolymerization of Lignocellulose 184
7.5.1 Pretreatment of Lignocellulose 184
7.5.2 Enzymatic Hydrolysis of Cellulose and Hemicellulose 186
7.5.3 Magnetic Immobilized Enzymes in Lignocellulose Conversion 188
7.6 Conclusions and Future Outlook 189
References 190
Chapter 8: Sustainability of Biomass 197
8.1 Introduction 197
8.2 The Scientific Arguments 199
8.3 Sustainability Initiatives 200
8.3.1 Technical Regulations 201
8.3.2 Technical Standards 202
8.3.3 Conformity Assessment Procedures 203
8.4 Requirements of Sustainability Initiatives 203
8.5 Sustainability Aspects Addressed by Certification Schemes 206
8.5.1 Aspects Addressed by Certification Schemes 206
8.5.2 Environmental Aspects 206
8.5.2.1 GHG Emissions 206
8.5.2.2 Water 209
8.5.2.3 Soil 211
8.5.2.4 Air 211
8.5.2.5 Biodiversity 212
8.5.2.6 Wastes 213
8.5.3 Social Aspects 213
8.5.3.1 Human Rights, Labor Rights, and Labor Conditions 213
8.5.3.2 Land Use and Water Use Rights 213
8.5.3.3 Food Security 214
8.5.3.4 Rural Development 215
8.5.4 Economic Aspects 216
8.6 Land Use Change 216
8.7 Final Remarks 218
References 221
Erratum to: Lignocellulosic Biomassfor Energy, Biofuels, Biomaterials,and Chemicals 226
A Glossary of Green Terms 227
References 256

Erscheint lt. Verlag 16.11.2017
Zusatzinfo X, 252 p. 84 illus., 47 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie
Schlagworte bioenergy • Biomass chemistry • Biomass conversion processes • Biorefineries • Biotechnology • natural resources and energy economics • Renewable chemistry
ISBN-10 3-319-66736-X / 331966736X
ISBN-13 978-3-319-66736-2 / 9783319667362
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald …

eBook Download (2022)
Carl Hanser Fachbuchverlag
53,99