Parameter Advising for Multiple Sequence Alignment - Dan DeBlasio, John Kececioglu

Parameter Advising for Multiple Sequence Alignment

Buch | Hardcover
XIV, 152 Seiten
2018 | 1st ed. 2017
Springer International Publishing (Verlag)
978-3-319-64917-7 (ISBN)
53,49 inkl. MwSt

This book develops a new approach called parameter advising for finding a parameter setting for a sequence aligner that yields a quality alignment of a given set of input sequences. In this framework, a parameter advisor is a procedure that automatically chooses a parameter setting for the input, and has two main ingredients:

(a) the set of parameter choices considered by the advisor, and

(b) an estimator of alignment accuracy used to rank alignments produced by the aligner.

On coupling a parameter advisor with an aligner, once the advisor is trained in a learning phase, the user simply inputs sequences to align, and receives an output alignment from the aligner, where the advisor has automatically selected the parameter setting.

The chapters first lay out the foundations of parameter advising, and then cover applications and extensions of advising. The content

- examines formulations of parameter advising and their computational complexity,

- develops methods for learning good accuracy estimators,

- presents approximation algorithms for finding good sets of parameter choices, and

- assesses software implementations of advising that perform well on real biological data.

Also explored are applications of parameter advising to

- adaptive local realignment, where advising is performed on local regions of the sequences to automatically adapt to varying mutation rates, and

- ensemble alignment, where advising is applied to an ensemble of aligners to effectively yield a new aligner of higher quality than the individual aligners in the ensemble.

The book concludes by offering future directions in advising research.

1 Introduction and Background.- 2 Alignment Accuracy Estimation.- 3 The Facet Estimator.- 4 Computational Complexity of Advising.- 5 Constructing Advisors.- 6 Parameter Advising for the Opal Aligner.- 7 Ensemble Mind Alignment.- 8 Adaptive Local Realignment.- 9 Core Column Prediction for Alignments.- 10 Future Directions.

Erscheinungsdatum
Reihe/Serie Computational Biology
Zusatzinfo XIV, 152 p. 32 illus., 30 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 378 g
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Weitere Themen Bioinformatik
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Biologie
Schlagworte Algorithm analysis and problem complexity • algorithms • Algorithms & Data Structures • Algorithms & data structures • Alignment accuracy • Alignment scoring parameters • approximation algorithms • Bioinformatics • Biological sequence analysis • Computational Biology/Bioinformatics • Computational Complexity • Computer Science • Discrete Optimization • Ensemble methods • Gap penalties • Information technology: general issues • Integer linear programming • Life sciences: general issues • Linear Programming • machine learning • Molecular Biology • Multiple sequence alignment • Numerical analysis • Optimization • Protein sequence alignment • Refining alignments • Substitution matrices
ISBN-10 3-319-64917-5 / 3319649175
ISBN-13 978-3-319-64917-7 / 9783319649177
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99