Economic Model Predictive Control (eBook)

Theory, Formulations and Chemical Process Applications
eBook Download: PDF
2016 | 1st ed. 2017
XXIV, 292 Seiten
Springer International Publishing (Verlag)
978-3-319-41108-8 (ISBN)

Lese- und Medienproben

Economic Model Predictive Control - Matthew Ellis, Jinfeng Liu, Panagiotis D. Christofides
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency.  Specifically, the book proposes:

  • Lyapunov-based EMPC methods for nonlinear systems;
  •  two-tier EMPC architectures that are highly computationally efficient; and
  •  EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics.

The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples.

The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes.In addition to being mathematically rigorous, these methods accommodate key practical issues, for example, direct optimization of process economics, time-varying economic cost functions and computational efficiency. Numerous comments and remarks providing fundamental understanding of the merging of process economics and feedback control into a single framework are included. A control engineer can easily tailor the many detailed examples of industrial relevance given within the text to a specific application.

The authors present a rich collection of new research topics and references to significant recent work making Economic Model Predictive Control an important source of information and inspiration for academics and graduate students researching the area and for process engineers interested in applying its ideas.

Dr. Liu received the BS and MS degrees in Control Science and Engineering from Zhejiang University in 2003 and 2006, respectively. He received the PhD degree in Chemical Engineering from the University of California, Los Angeles in 2011. Before joining the University of Alberta in April, 2012, Dr. Liu was a postdoctoral researcher at the University of California, Los Angeles. His research interests are in the general areas of process control theory and practice with emphasis on model predictive control, networked and distributed control, process monitoring, and real-time control of chemical processes and energy generation systems.

Professor Panagiotis Christofides obtained his PhD from the University of Minnesota in 1996 and he has been a professor at the University of California, Los Angeles since 2004. He is a fellow of various professional societies:  the American Association for the Advancement of Science, the International Federation of Automatic Control and the IEEE. He is the author of numerous research papers, as well as two previous books published by Springer and has much experience of conference organization having served on various boards at various times, among them as the AIChE Director on the American Automatic Control Council.

Dr. Liu received the BS and MS degrees in Control Science and Engineering from Zhejiang University in 2003 and 2006, respectively. He received the PhD degree in Chemical Engineering from the University of California, Los Angeles in 2011. Before joining the University of Alberta in April, 2012, Dr. Liu was a postdoctoral researcher at the University of California, Los Angeles. His research interests are in the general areas of process control theory and practice with emphasis on model predictive control, networked and distributed control, process monitoring, and real-time control of chemical processes and energy generation systems. Professor Panagiotis Christofides obtained his PhD from the University of Minnesota in 1996 and he has been a professor at the University of California, Los Angeles since 2004. He is a fellow of various professional societies:  the American Association for the Advancement of Science, the International Federation of Automatic Control and the IEEE. He is the author of numerous research papers, as well as two previous books published by Springer and has much experience of conference organization having served on various boards at various times, among them as the AIChE Director on the American Automatic Control Council. 

Series Editors’ Foreword 6
Preface 9
Contents 11
List of Figures 15
List of Tables 23
1 Introduction 25
1.1 Motivation 25
1.2 Tracking Versus Economic Model Predictive Control: A High-Level Overview 28
1.3 Chemical Processes and Time-Varying Operation 30
1.3.1 Catalytic Oxidation of Ethylene 31
1.3.2 Continuously-Stirred Tank Reactor with Second-Order Reaction 34
1.4 Objectives and Organization of the Book 39
References 41
2 Background on Nonlinear Systems, Control, and Optimization 44
2.1 Notation 44
2.2 Stability of Nonlinear Systems 45
2.2.1 Lyapunov's Direct Method 48
2.2.2 LaSalle's Invariance Principle 49
2.3 Stabilization of Nonlinear Systems 50
2.3.1 Control Lyapunov Functions 50
2.3.2 Stabilization of Nonlinear Sampled-Data Systems 52
2.3.3 Tracking Model Predictive Control 57
2.3.4 Tracking Lyapunov-Based MPC 59
2.4 Brief Review of Nonlinear and Dynamic Optimization 60
2.4.1 Notation 61
2.4.2 Definitions and Optimality Conditions 62
2.4.3 Nonlinear Optimization Solution Strategies 65
2.4.4 Dynamic Optimization 69
References 76
3 Brief Overview of EMPC Methods and Some Preliminary Results 79
3.1 Background on EMPC Methods 79
3.1.1 Class of Nonlinear Systems 79
3.1.2 EMPC Methods 81
3.2 Application of EMPC to a Chemical Process Example 89
References 93
4 Lyapunov-Based EMPC: Closed-Loop Stability, Robustness, and Performance 96
4.1 Introduction 96
4.2 Lyapunov-Based EMPC Design and Implementation 97
4.2.1 Class of Nonlinear Systems 97
4.2.2 Stabilizability Assumption 97
4.2.3 LEMPC Formulation 98
4.2.4 Implementation Strategy 101
4.2.5 Satisfying State Constraints 102
4.2.6 Extensions and Variants of LEMPC 104
4.3 Closed-Loop Stability and Robustness Under LEMPC 106
4.3.1 Synchronous Measurement Sampling 106
4.3.2 Asynchronous and Delayed Sampling 112
4.3.3 Application to a Chemical Process Example 117
4.4 Closed-Loop Performance Under LEMPC 125
4.4.1 Stabilizability Assumption 125
4.4.2 Formulation and Implementation of the LEMPC with a Terminal Equality Constraint 126
4.4.3 Closed-Loop Performance and Stability Analysis 127
4.5 LEMPC with a Time-Varying Stage Cost 133
4.5.1 Class of Economic Costs and Stabilizability Assumption 133
4.5.2 The Union of the Stability Regions 134
4.5.3 Formulation of LEMPC with Time-Varying Economic Cost 137
4.5.4 Implementation Strategy 139
4.5.5 Stability Analysis 140
4.5.6 Application to a Chemical Process Example 142
4.6 Conclusions 153
References 153
5 State Estimation and EMPC 155
5.1 Introduction 155
5.1.1 System Description 156
5.1.2 Stabilizability Assumption 156
5.2 High-Gain Observer-Based EMPC Scheme 157
5.2.1 State Estimation via High-Gain Observer 159
5.2.2 High-Gain Observer-Based EMPC 160
5.2.3 Closed-Loop Stability Analysis 162
5.2.4 Application to a Chemical Process Example 166
5.3 RMHE-Based EMPC Scheme 173
5.3.1 Observability Assumptions 174
5.3.2 Robust MHE 175
5.3.3 RMHE-Based EMPC 177
5.3.4 Stability Analysis 180
5.3.5 Application to a Chemical Process Example 185
5.4 Conclusions 189
References 189
6 Two-Layer EMPC Systems 191
6.1 Introduction 191
6.1.1 Notation 192
6.2 Two-Layer Control and Optimization Framework 194
6.2.1 Class of Systems 194
6.2.2 Formulation and Implementation 195
6.2.3 Application to a Chemical Process 205
6.3 Unifying Dynamic Optimization with Time-Varying Economics and Control 211
6.3.1 Stabilizability Assumption 212
6.3.2 Two-Layer EMPC Scheme Addressing Time-Varying Economics 213
6.3.3 Application to a Chemical Process Example 221
6.4 Addressing Closed-Loop Performance 228
6.4.1 Class of Systems 229
6.4.2 Stabilizability Assumption 230
6.4.3 Two-Layer EMPC Structure 231
6.4.4 Application to Chemical Process Example 240
6.5 Conclusions 250
References 251
7 EMPC Systems: Computational Efficiency and Real-Time Implementation 253
7.1 Introduction 253
7.2 Economic Model Predictive Control of Nonlinear Singularly Perturbed Systems 254
7.2.1 Class of Nonlinear Singularly Perturbed Systems 254
7.2.2 Two-Time-Scale Decomposition 255
7.2.3 Stabilizability Assumption 257
7.2.4 LEMPC of Nonlinear Singularly Perturbed Systems 258
7.2.5 Application to a Chemical Process Example 269
7.3 Distributed EMPC: Evaluation of Sequential and Iterative Architectures 272
7.3.1 Centralized EMPC 274
7.3.2 Sequential DEMPC 275
7.3.3 Iterative DEMPC 278
7.3.4 Evaluation of DEMPC Approaches 281
7.4 Real-Time Economic Model Predictive Control of Nonlinear Process Systems 282
7.4.1 Class of Systems 284
7.4.2 Real-Time LEMPC Formulation 285
7.4.3 Implementation Strategy 286
7.4.4 Stability Analysis 290
7.4.5 Application to a Chemical Process Network 295
7.5 Conclusions 307
References 308
Index 310

Erscheint lt. Verlag 27.7.2016
Reihe/Serie Advances in Industrial Control
Zusatzinfo XXIV, 292 p. 95 illus., 16 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Elektrotechnik / Energietechnik
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Computational Efficiency • Model Predictive Control • Multiple-time-scale Dynamics • Nonlinear Systems • Process Economic Optimization • Time-delay Systems • Time-varying Cost Function
ISBN-10 3-319-41108-X / 331941108X
ISBN-13 978-3-319-41108-8 / 9783319411088
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Manufacturing Excellence in der Smart Factory

von Jürgen Kletti; Jürgen Rieger

eBook Download (2023)
Springer Vieweg (Verlag)
69,99