A Course in Mathematical Statistics and Large Sample Theory - Rabi Bhattacharya, Lizhen Lin, Victor Patrangenaru

A Course in Mathematical Statistics and Large Sample Theory

Buch | Hardcover
389 Seiten
2016 | 1st ed. 2016
Springer-Verlag New York Inc.
978-1-4939-4030-1 (ISBN)
139,09 inkl. MwSt
This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics.
Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods.

Rabi Bhattacharya, PhD, has held regular faculty positions at UC, Berkeley; Indiana University; and the University of Arizona.  He is a Fellow of the Institute of Mathematical Statistics and a recipient of the U.S. Senior Scientist Humboldt Award and of a Guggenheim Fellowship.  He has served on editorial boards of many international journals and has published several research monographs and graduate texts on probability and statistics, including Nonparametric Inference on Manifolds, co-authored with A. Bhattacharya. Lizhen Lin, PhD, is Assistant Professor in the Department of Statistics and Data Science at the University of Texas at Austin.  She received a PhD in Mathematics from the University of Arizona and was a Postdoctoral Associate at Duke University.  Bayesian nonparametrics, shape constrained inference, and nonparametric inference on manifolds are among her areas of expertise.  Vic Patrangenaru, PhD, is Professor of Statistics at Florida State University.  He received PhDs in Mathematics from Haifa, Israel, and from Indiana University in the fields of differential geometry and statistics, respectively.  He has many research publications on Riemannian geometry and especially on statistics on manifolds.  He is a co-author with L. Ellingson of Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis. 

1 Introduction.- 2 Decision Theory.- 3 Introduction to General Methods of Estimation.- 4 Sufficient Statistics, Exponential Families, and Estimation.- 5 Testing Hypotheses.- 6 Consistency and Asymptotic Distributions and Statistics.- 7 Large Sample Theory of Estimation in Parametric Models.- 8 Tests in Parametric and Nonparametric Models.- 9 The Nonparametric Bootstrap.- 10 Nonparametric Curve Estimation.- 11 Edgeworth Expansions and the Bootstrap.- 12 Frechet Means and Nonparametric Inference on Non-Euclidean Geometric Spaces.- 13 Multiple Testing and the False Discovery Rate.- 14 Markov Chain Monte Carlo (MCMC) Simulation and Bayes Theory.- 15 Miscellaneous Topics.- Appendices.- Solutions of Selected Exercises in Part 1.

Erscheinungsdatum
Reihe/Serie Springer Texts in Statistics
Zusatzinfo 2 Illustrations, color; 7 Illustrations, black and white; XI, 389 p. 9 illus., 2 illus. in color.
Verlagsort New York
Sprache englisch
Maße 178 x 254 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Biologie
Schlagworte Asymptotic Distribution • Bayes estimators • Bayes rules • Bootstrap • confidence intervals • Cramer-Rao Inequality • Curve Estimation • Decision Theory • Gauss-Markov Theorem • Large Sample Theory • linear models • Markov Chain Monte Carlo Simulation • Neyman-Pearson lemma • Nonparametric • Parametric • Unbiased Estimation
ISBN-10 1-4939-4030-9 / 1493940309
ISBN-13 978-1-4939-4030-1 / 9781493940301
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00