Production of Hydrogen from Renewable Resources (eBook)
XVI, 368 Seiten
Springer Netherland (Verlag)
978-94-017-7330-0 (ISBN)
This book provides state-of-the-art reviews, current research and prospects of producing hydrogen using bio, thermal and electrochemical methods and covers hydrogen separation, storage and applications. Hydrogen produced from biomass offers a clean and renewable energy source and a promising energy carrier that will supplement or replace fossil fuels in the future. The book is intended as a reference work for researchers, academics and industrialists working in the chemical and biological sciences, engineering, renewable resources and sustainability. Readers will find a wealth of information in the text that is both useful for the practical development of hydrogen systems and essential for assessing hydrogen production by bioelectrochemical, electrochemical, fermentation, gasification, pyrolysis and solar means, applied to many forms of biomass. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.
Preface 6
Acknowledgments 8
Contents 10
Contributors 12
About the Editors 16
Part I: Bioconversion 18
Chapter 1: Dark Fermentative Hydrogen Production from Lignocellulosic Biomass 19
1.1 Introduction 20
1.2 Fundamentals of Dark Hydrogen Fermentations 21
1.3 Advantages of Dark Hydrogen Fermentations 22
1.4 Effect of Process Parameters on Dark Hydrogen Fermentation 23
1.5 Lignocellulosic Biomass Sources 24
1.6 Methods of Lignocellulosic Biomass Pretreatment for Dark Hydrogen Fermentations 26
1.7 Hydrogen Yields and Productivities from Lignocellulosic Hydrolysates 39
1.8 Coproduct Valorization 42
1.9 Challenges 43
1.10 Conclusions and Future Outlook 45
References 46
Chapter 2: Biohydrogen Production via Lignocellulose and Organic Waste Fermentation 57
2.1 Introduction to Feedstocks 58
2.1.1 Organic Wastes 59
2.1.2 Lignocelluloses 59
2.2 Pretreatment of Lignocellulosic Feedstock 61
2.2.1 Physical 61
2.2.2 Chemical 64
2.2.3 Physicochemical 65
2.2.4 Biological 66
2.2.5 Organosolv Pretreatment 67
2.3 Fermentative Hydrogen Production 67
2.3.1 Microorganisms 68
2.3.2 Fermenter Types 69
2.3.2.1 CSTR 69
2.3.2.2 UASB 70
2.3.2.3 Anaerobic Biofilm and Granule Reactor 70
2.3.2.4 Membrane Bioreactor 71
2.3.3 Environmental Operational Conditions 71
2.3.3.1 Substrate Concentration 71
2.3.3.2 Nutrients and Metals 74
2.3.3.3 pH 75
2.3.3.4 Temperature 76
2.3.3.5 HRT 77
2.4 Conclusions and Future Outlook 78
References 79
Chapter 3: High-Yield Production of Biohydrogen from Carbohydrates and Water Based on In Vitro Synthetic (Enzymatic) Pathways 92
3.1 Introduction 93
3.1.1 Hydrogen 93
3.1.2 Hydrogen Production Approaches 93
3.1.3 In Vitro (Cell-Free) Enzymatic Pathways for Water Splitting 94
3.2 Design of In Vitro Synthetic Enzymatic Pathways 95
3.3 Examples of Hydrogen Production from Carbohydrates 98
3.3.1 Hydrogen Production from Starch and Cellodextrins 98
3.3.2 Hydrogen Production from Xylose 99
3.3.3 Hydrogen Production from Sucrose 99
3.3.4 Hydrogen Production from Biomass Sugars 100
3.3.5 High-Rate Hydrogen Production from Glucose 6-Phosphate 100
3.4 Technical Obstacles to Low-Cost H2 Production 100
3.4.1 Enzyme Cost and Stability 101
3.4.2 Enzymatic Reaction Rates 103
3.4.3 Cofactor Cost and Stability 103
3.5 Conceptual Obstacles to Enzymatic H2 Production 105
3.6 Conclusions and Future Outlook 105
References 106
Part II: Thermoconversion 110
Chapter 4: Hydrogen Production from Biomass Gasification 111
4.1 Introduction 111
4.2 Biomass Gasification Technologies 112
4.3 Autothermal and Allothermal Gasification 113
4.4 Product Gas Quality 115
4.5 Supercritical Water Gasification Technology 118
4.6 Hydrogen Separation from Biomass Gasification 118
4.6.1 Membrane Separation 119
4.6.2 Membrane Integrated in the Gasification Reactor (Reformer) 120
4.6.3 Reformer and Membrane Modules 120
4.6.4 Water-Gas Shift Reaction 122
4.6.5 Water-Gas Shift with Pressure Swing Adsorption 123
4.6.6 Adsorption Enhanced Reforming 124
4.6.7 Typical Hydrogen Production Process Integrated in Biomass Gasification Systems 125
4.7 Hydrogen Production by Reaction Integrated Novel Gasification 125
4.8 Economics of Hydrogen Production from Biomass Gasification 127
4.9 Conclusions and Future Outlook 129
References 129
Chapter 5: Hydrogen Production from Catalytic Biomass Pyrolysis 132
5.1 Introduction 133
5.2 Fundamentals of Biomass Pyrolysis 134
5.2.1 Composition and Characteristics of Lignocellulosic Biomass 134
5.2.2 Reaction Pathways and Types of Pyrolysis 135
5.2.3 Product Distribution and Characteristics 136
5.2.4 Pyrolysis Reactors 137
5.3 Catalysts 139
5.4 One-Step Processes 142
5.5 Multi-step Processes 147
5.5.1 Catalytic Steam Reforming of Bio-Oil 148
5.5.2 Catalytic Cracking of Bio-Oil 152
5.5.3 Other Approaches 153
5.6 Concluding Remarks and Future Outlook 154
References 154
Chapter 6: Low Carbon Production of Hydrogen by Methane Decarbonization 161
6.1 Introduction 161
6.2 Socioeconomic Benefits of Methane Decarbonization 163
6.3 Methane Pyrolysis Reaction 166
6.4 Technical Options for Methane Decarbonization 171
6.5 Concept Proposals 172
6.6 Economic Analysis 176
6.7 Application to Industrial Processes 179
6.7.1 Ammonia Production 180
6.7.2 Biofuel Production 180
6.8 Main Technological Problems 181
6.9 Conclusions and Future Outlook 185
References 187
Chapter 7: Hydrogen Production by Supercritical Water Gasification of Biomass 190
7.1 Introduction 191
7.2 Supercritical Fluids and Supercritical Water 193
7.2.1 The Physical Properties of Supercritical Water 193
7.2.2 The Role of Supercritical Water in Chemical Reactions 195
7.2.3 Gasification Reactions in Supercritical Water Media 196
7.3 Hydrogen Production by Supercritical Water Gasification 198
7.3.1 Influence of Process Parameters on Hydrogen Production 199
7.3.1.1 Temperature 200
7.3.1.2 Pressure 202
7.3.1.3 Residence Time 205
7.3.1.4 Feedstock Concentration 207
7.3.1.5 Oxidant Concentration 210
7.3.1.6 Use of Catalyst 211
Alkali Catalysts 212
NaOH 213
KOH 213
Na2CO3 214
K2CO3 214
Metal-Based Catalysts 215
Nickel 216
Ruthenium 217
Other Metal Catalysts 219
7.3.2 Literature Studies 221
7.4 Conclusions and Future Outlook 221
References 227
Part III: Electrochemical and Solar Conversions 232
Chapter 8: Hydrogen Production from Water and Air Through Solid Oxide Electrolysis 233
8.1 Introduction 233
8.2 Water Electrolysis 235
8.2.1 Alkaline Electrolyzer 236
8.2.2 PEM Electrolyzer 237
8.2.3 Solid Oxide Electrolysis Cells 237
8.3 Assessment and Application Status 239
8.3.1 Technical Assessment 239
8.3.2 Economic Assessment 241
8.3.3 Co-electrolysis of Steam and CO2 242
8.4 Key Materials for SOECs 243
8.4.1 Electrolyte 243
8.4.2 Oxygen Electrode 243
8.4.3 Hydrogen Electrode 244
8.5 Performance Degradation of SOEC Electrodes 245
8.5.1 Oxygen Electrodes 245
8.5.1.1 LSM 245
8.5.1.2 MIEC Oxygen Electrodes 247
8.5.1.3 Degradation by Contaminants 248
8.5.1.4 Improved Durability via Reversible Operations 249
8.5.1.5 Development of Robust Oxygen Electrodes 250
8.5.2 Ni Cermet Hydrogen Electrodes 251
8.6 Conclusions and Future Outlook 252
References 252
Chapter 9: Bioelectrochemical Production of Hydrogen from Organic Waste 259
9.1 What Is Bioelectrochemical Production of Hydrogen? 259
9.2 MEC Principles and Advantages 260
9.3 MEC Architecture 261
9.4 Factors Affecting MEC Performance 264
9.4.1 Anode Electrode Materials and Anodic Biocatalysts 264
9.4.2 Cathode Electrode Materials and Cathodic Catalysts 265
9.4.3 Chamber Volume, Electrode Size, and Electrode Position 268
9.4.4 Separator 268
9.4.5 Power Supply 270
9.4.6 Substrates 271
9.4.7 Electrolyte 273
9.4.8 Other Operational Factors 274
9.5 Hydrogen Yield of Organic Waste-Fed and Scaled-Up MECs 274
9.5.1 Hydrogen Yield from Organic Waste in MECs 274
9.5.2 Hydrogen Yield in Scaled-Up MECs 276
9.6 Anodic Bacterial Community 278
9.7 Technological Challenges for Practical Implementation 280
9.7.1 Challenges Associated with the Anode and Electrolyte 280
9.7.1.1 Metabolic Diversity 280
9.7.1.2 Electron Losses by Methanogens 281
9.7.1.3 Electrode Resistance 281
9.7.1.4 Electrolyte Buffer Capacity and Conductivity 282
9.7.2 Challenges Associated with the Cathode 282
9.7.2.1 Expensive Catalysts and High Potential Losses 282
9.7.3 Challenges Associated with Cell Design and Separator 283
9.7.3.1 pH Imbalance Between Anode and Cathode Chambers 283
9.7.3.2 Biofouling on Surface of Membranes 283
9.7.3.3 Gas Crossover Through Membranes 283
9.7.3.4 Membraneless Single-Chambered Design 283
9.8 Conclusions and Future Outlook 284
References 284
Chapter 10: Solar Hydrogen Production 292
10.1 Introduction 292
10.2 The Growing Energy Demand Challenge 293
10.3 Solar Technologies 294
10.4 Solar Hydrogen Production 299
10.5 Thermochemical Processes 301
10.6 Materials for Hydrogen Production 305
10.7 Solar Reactor Concepts 307
10.8 Solar Fuels 313
10.9 Conclusions and Future Outlook 314
References 316
Part IV: Separations and Applications with Fuel Cells 321
Chapter 11: Separation and Purification of Hydrogen Using CO2-Selective Facilitated Transport Membranes 322
11.1 Introduction 323
11.2 Membranes for H2 Purification 324
11.3 Polymeric Facilitated Transport Membranes for H2 Purification 326
11.4 Membranes for Low-Pressure H2 Purification 328
11.4.1 CO2 Transport Properties 328
11.4.2 H2S Transport Properties 331
11.4.3 Membrane Stability 332
11.4.4 Water-Gas-Shift (WGS) Membrane Reactor 333
11.4.5 Pilot-Scale Membrane Fabrication 334
11.5 Membranes for High-Pressure H2 Purification 336
11.5.1 Mixed Matrix Membranes 337
11.6 Potential Industrial Applications 339
11.6.1 Low-Pressure H2 Purification for Fuel Cells 339
11.6.2 High-Pressure H2 Purification 340
11.7 Conclusions and Future Outlook 341
Nomenclature 341
Greek Letter 342
Subscripts 342
Abbreviations 342
References 342
Chapter 12: Hydrogen Production for PEM Fuel Cells 346
12.1 Introduction 346
12.2 Membrane Reactors 348
12.2.1 Membrane Categories 348
12.2.2 Palladium-Based Membranes 350
12.3 High-Grade Hydrogen Generation for Fuel Cells from Reforming of Renewables in MRs 354
12.3.1 Ethanol Steam Reforming in MRs 354
12.3.2 Methanol Steam Reforming in MRs 356
12.4 Conclusions and Future Outlook 358
References 360
Index 364
Erscheint lt. Verlag | 6.11.2015 |
---|---|
Reihe/Serie | Biofuels and Biorefineries | Biofuels and Biorefineries |
Zusatzinfo | XVI, 368 p. 107 illus., 47 illus. in color. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Biologie ► Biochemie |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
Schlagworte | biomass pyrolysis • Hydrogen Production • hydrogen storage • Hydrothermal Gasification • renewable resources • Sustainable energy |
ISBN-10 | 94-017-7330-0 / 9401773300 |
ISBN-13 | 978-94-017-7330-0 / 9789401773300 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich