Energy Consumption and Autonomous Driving (eBook)

Proceedings of the 3rd CESA Automotive Electronics Congress, Paris, 2014

Jochen Langheim (Herausgeber)

eBook Download: PDF
2015 | 1st ed. 2016
XIII, 245 Seiten
Springer International Publishing (Verlag)
978-3-319-19818-7 (ISBN)

Lese- und Medienproben

Energy Consumption and Autonomous Driving -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This volume collects selected papers of the 3rd CESA Automotive Electronics Congress, Paris, 2014. CESA is the most important automotive electronics conference in France. The topical focus lies on state-of-the-art automotive electronics with respect to energy consumption and autonomous driving. The target audience primarily comprises industry leaders and research experts in the automotive industry. 

Preface 6
CESA Committees 9
Contents 11
Part I Market 14
1 Autonomous Driving: Disruptive Innovation that Promises to Change the Automotive Industry as We Know It 15
Abstract 15
1 Automated Driving: A Staged Evolution 15
1.1 A Combination of Technology Innovation, Competitive Forces, Benefits and Regulations Are Fueling the Trend Towards Automated Driving 15
1.2 A Staged Evolution: Early Autonomous Driving Features Are Already Available, While Full Self-Driving Automation Will Be Ready by 2025--2030 16
2 Technology to Replace Human Senses: Removing the Human from the Driver's Seat Requires Four Key Areas of Mastery 17
3 Significant Opportunities Await: By 2030, New Opportunities from Autonomous Driving Will Be Around USD 40--60 bn, and That's just the Start 18
4 Fortune Favors the Prepared: To Capitalize on the New Opportunities, OEMs and Suppliers Need to Prepare and Take Action Today 20
4.1 Key Focus Areas for OEM 20
4.1.1 Driving Experience 20
4.1.2 Prediction and Decision Algorithms 20
4.1.3 Architecture 20
4.1.4 Business Models 21
4.1.5 Areas of Differentiation 21
4.2 Key Focus Areas by Supplier Type 21
4.2.1 Major System Suppliers Providing Full--Spectrum Solutions 22
4.2.2 Specialized Suppliers Already Active in Areas of ADAS and Active Safety 22
4.2.3 Suppliers Focused on Technology Innovation 22
Reference 22
Connected Car and Acceptance 23
Part II Connected Car and Acceptance 23
2 Automotive Security Testing---The Digital Crash Test 24
Abstract 24
1 Introduction 25
2 Automotive Attack Motivations and Threats 25
3 Automotive Security Evaluations 26
4 Theoretical Automotive Security Analyses 27
5 Practical Automotive Security Testing 28
5.1 Functional Automotive Security Testing 29
5.2 Automotive Vulnerability Scans 30
5.3 Automotive Fuzzing 30
5.4 Automotive Penetration Testing 31
6 Conclusion and Outlook 32
References 33
3 Accelerated and Cost Effective Deployment of V2X Solution 34
Abstract 34
1 Introduction 35
2 OEMs Requirements 35
2.1 Overview 35
2.2 V2X Solution Location 35
2.3 Supplier Eco-System 36
2.4 Low-Cost Solution 36
3 Key Technical Requirements 36
3.1 Comprehensive Functional Automotive-Grade Solution 36
3.2 Standard Compliance and Interoperability 37
3.3 Worldwide Support 37
3.4 Safety Critical Reliability 37
3.5 Secure Solution 38
4 Cost-Effective Solution 39
4.1 Cost Contributors 39
4.2 Cost Saving Factors 39
5 Quick Solution Availability 40
6 Case Studies 40
6.1 Adding V2X to TCU 40
6.2 Standalone V2X ECU 41
7 Conclusion 41
Acknowledgments 42
4 V2V and V2I Communications---From Vision to Reality 43
Abstract 43
1 Introduction 43
2 V2V and V2I in Action 44
3 Security in the Connected Car 44
4 Setting the Standard 45
Part III Technical Progress—ADAS 46
5 Model-Based Design for the Development and System-Level Testing of ADAS 47
Abstract 47
1 Introduction 48
2 Model-Based Design 48
3 Image Processing and Computer Vision 49
4 Control 52
5 End-to-End Lane Keeping System 53
6 Conclusion 55
Acknowledgments 56
References 56
6 Basis Autonomous Driving Functionality ``Cruise4U'' Economic Cruise Control (ECC) Based on Series Production Sensors 57
Abstract 57
1 Introduction 57
2 Challenges and Requirements Coming from ECC 58
3 Example Development Procedure in ECC Scenarios 59
4 Approaches to Reflecting Distributed Drive Functions in Relation to Highly Automated Driving 60
5 Providing Domain Control Data for ECC 61
6 Summary 63
References 63
7 Standardization of Generic Architecture for Autonomous Driving: A Reality Check 64
Abstract 64
1 Introduction 65
2 Layered Decision Making 66
2.1 Motivation 66
2.2 Layered Planning Architecture 67
3 Standardization Efforts 67
3.1 Generic Vehicle Architecture (GVA) 67
3.2 JAUS Standardisation 68
3.3 AUTOSAR 69
3.4 ROS 70
4 Critical Analysis 72
4.1 Towards a Decisional Architecture Standard? 72
4.2 System Properties and Problems 73
4.3 Algorithm Complexity, Completeness and Determinism 73
4.4 A New Systems Engineering Domain? 74
5 Conclusion 74
Acknowledgments 74
References 75
Part IV New Usage of Cars with MoreAutomation 76
8 User Experience of Dynamic Carpooling: How to Encourage Drivers and Passengers? 77
Abstract 77
1 Introduction 77
1.1 From Planned Carpooling 78
1.2 To Dynamic Carpooling 79
2 Materials and Methods 80
2.1 A Difficult Assessment of Usage 80
2.2 USA and Europe First Experiments to Test the Feasibility of Published Services 80
2.3 Servicing, Experiments and Wider Deployments in Progress 81
2.4 Lessons Can Be Difficult to Capitalise 81
3 Results 82
3.1 History of this Dynamic Way of Sharing a Vehicle 82
3.2 The Technical Components of Dynamic Carpooling 82
3.3 The Keystone of This System: The Development of a Critical Mass 83
3.4 Benefits and Limitations of the System 83
3.4.1 Users' Benefits 83
3.4.2 Users' Limitations 84
3.5 Incentive Measures for the Development of Dynamic Carpooling 84
4 Discussion 86
Acknowledgments 86
References 86
9 Decarbonated and Autonomous Vehicles: The Relevant Legal Consensus 88
Abstract 88
1 Introduction 88
2 The Vienna Convention and the Definition of ``Driver'' 88
3 Liability Issues 89
3.1 Product Liability (Article 1386-3 of the French Civil Code) 90
3.2 Liability for Road Traffic Accidents 90
3.3 Criminal Law 92
4 Focus on Foreign Legal Systems 92
10 Is the Law Ready for Autonomous Cars? 94
Abstract 94
1 Introduction 94
2 Autonomy Levels and the Human Driver 95
2.1 Vehicle Autonomy 95
2.2 The Human Driver Requirement 96
2.3 Driver's Behavior 97
3 Distribution of Responsibility 97
3.1 Product Liability 98
3.2 Technical Standards 98
3.3 The Issue of Distribution of Liability 98
3.4 Insurance 99
4 Data and Cyber Security 100
4.1 Importance of Data for Autonomy 100
4.2 A Threat to Security 101
4.3 A Threat to Privacy 101
5 Outlook 102
References 102
Part V Standards, Test, Validation 104
11 Challenges and Approaches for Testing of Highly Automated Vehicles 105
Abstract 105
1 Towards Highly Automated Vehicles (HAV) 105
2 Specific Challenges of HAV 106
3 Safety Benchmark for HAV 106
4 Safety Assessment of HAV 107
5 Accident Types and Testing Approaches 107
5.1 Failure of Components 107
5.2 Behaviour-Dependant Accidents 108
5.3 Deficiencies in Environment Sensing 108
5.4 Deficiencies in Control Algorithms 109
5.5 Faulty Driver and Vehicle Interaction 109
6 Driving Risk Scenario 110
7 Controllability 111
8 Establishing Testing Standards 112
8.1 How Safe Is Safe Enough? 112
8.2 How to Validate the Safety Requirements? 112
8.3 How to Measure and Test Efficiently? 112
9 Conclusion 112
Acknowledgments 113
References 113
12 Generic Simulation and Validation Approach for Various Kind of ADAS Systems 114
Abstract 114
1 Introduction 114
2 System Overview 115
3 CONNECT---Development Environment 115
4 High Speed ECU Measurement Hardware 118
5 Rapid Prototyping/Function Bypassing 121
6 ADAS ECU Road Validation and Data Logging 124
7 Conclusion 127
13 Methodology to Assess and to Validate the Dependability of an Advanced Driver Assistance System (ADAS) Such as Automatic Emergency Braking System (AEBS) 128
Abstract 128
1 Introduction 128
2 General Principles for the ISO 26262 Standard 129
2.1 ASIL Ranking/``Pre-existing Risk'' 129
3 Application to the AEBS Function 130
3.1 Product [E x C](Sk) 130
3.2 ``Pre-existing Risk'' Assessment 131
3.3 ``Failure Rate Criterion'' 132
4 Validation of the Requirement 133
4.1 Objective for a Driving Validation 133
5 Conclusion 134
Acknowledgments 134
References 134
14 Methodology for ADAS Validation: Potential Contribution of Other Scientific Fields Which Have Already Answered the Same Questions 135
Abstract 135
1 Introduction 135
2 Learn and Test Data Bases for Learning-Based Systems 136
3 Application to ADAS Validation 137
3.1 List of Factors of Variability 137
3.2 How to Take Those Examples 138
4 Data Analysis and Online Confidence Estimation 138
5 Conclusion 139
References 139
Part VI CO2 Reduction, Hybridization,Regulation 141
15 A Green Light Optimal Speed Advisor for Reduced CO2 Emissions 142
Abstract 142
1 Introduction 143
2 Context 143
2.1 Co-Drive Public Project 143
2.2 V2X Communication 144
3 GLOSA 145
3.1 Principle and Objectives 145
3.2 Expected Benefits 145
3.3 A GLOSA System Implementation 145
4 Experimental Results 145
4.1 Equipment 146
4.2 Parameters 148
4.3 Qualitative Results 148
4.4 Quantitative Results 149
4.5 Analysis 150
5 Conclusion 151
Acknowledgments 151
References 151
16 Upgrade-E: A Rapid Prototyping Platform for Connected Powertrain Functions and Services 153
Abstract 153
1 Introduction 153
2 Basic Idea Upgrade-E 154
3 Quality Criteria 155
4 Software Concept Upgrade-E 156
5 OSM Navigation/SRTM Elevation Data 157
6 Simulation 158
7 Variance in Energy Consumption 158
8 Quality of the Drive Profiles 159
9 Quality of the Simulation 160
10 Conclusion 161
References 161
17 Highly Efficient Electrical Recuperation System 162
Abstract 162
1 Introduction 163
2 Electrical System Architecture 164
2.1 Electrical Background 164
2.2 SPRESSO System 165
2.3 Description 166
2.4 Gasoline Mode 166
2.5 Air Mode 166
2.6 Combined Mode 167
3 Electrical Behaviour 171
3.1 Road Driving Test 171
3.2 Compliance to Safety Goals 171
3.3 Storage Modules Challenge 171
4 Perspectives 172
5 Conclusion 172
Acknowledgments 172
References 172
Part VII Key Technologies for Modern Cars 174
18 Distance Measurement Using Near Infrared Sensors 175
Abstract 175
1 Introduction 176
1.1 Triangulation 176
1.2 Interferometric Approach 177
1.3 Travel Time Measurement 177
2 3D Light Pulse Travel Time Sensor 178
3 Halios IrDM 181
3.1 Features 181
3.2 Basic Functions 182
3.3 Calibration 183
3.3.1 Zero Calibration 183
3.3.2 Zero-Meter Calibration 184
3.3.3 Modulator Calibration 185
3.4 Measurement 185
4 Conclusion 187
References 187
19 Trends in Smart Power Technologies for Automotive Applications 188
Abstract 188
1 Introduction 189
2 Silicon Technologies for Automotive Applications 189
3 BCD-Smart Power Technologies for Automotive Applications 190
3.1 BCD (Bipolar-CMOS-DMOS) Technologies 190
3.2 BCD9s (110 nm) Smart Power Technology for Automotive Applications 191
4 Fuel Injector Driver Application and Evolution 192
5 BCD-Smart Power Technologies for HEV Application 193
6 High Current, High Power, High Energy Capability 196
7 Conclusions 198
Acknowledgments 198
References 198
20 Photonic Technologies for the Automotive Industry 200
Abstract 200
1 Introduction 200
Part VIII Human Factors in Modern Cars 204
21 The Smart Connected Seat to Enable Real Life on Board Vehicle Proposition-Renault NEXT TWO (*) Connected Seat Show Case 205
Abstract 205
1 Introduction: Faurecia's Smart Connected Seat Show Case---Renault NEXT TWO (*)---Seat Electronics 206
2 The System Concept and Architecture 206
2.1 First Group of Functions 206
3 The Faurecia's FIT2122 Intelligence, Seat and Pneumatics ECUs FIT2122 Ready 208
3.1 Faurecia FIT2122 Algorithm Along the Seat Sequence 209
3.2 Faurecia Seat ECU FIT2122 Ready 210
3.3 Faurecia Pneumatics ECU FIT2122 Ready 212
4 Conclusion 212
Acknowledgements 212
22 The Connected Car and Acceptance of Users High Customer Acceptance Through Functional Integration in HMI Systems 213
Abstract 213
1 The Biggest Complaint 213
2 Manufacturers Have Good Intentions, but Ultimately Their Efforts Yield Poor Results 214
3 Car Manufacturers Consider Mobility as Their Very Own Ecosystem 214
4 Connected C@R 2014 Study 215
5 Crux Data Security 215
6 A Modern Car Communicates with Its Environment, with Other Vehicles, with the Home 216
7 Audi Supports Apple's CarPlay 216
8 What Technology Can Do 217
9 Conclusion 218
10 Sources 219
23 Introducing User-in-the-Loop Quantitative Testing into Automotive HMI Development Process 220
Abstract 220
1 Introduction 221
2 Vision of the Final Framework 222
3 Core Technical Solution 225
3.1 Technical Specifications 225
3.2 Enabling Technology 226
3.3 Implementing the Backbone 228
4 Proof-of-Concept Demonstrator 230
4.1 Demo Scenario 230
4.2 Demonstrator Implementation 231
5 Conclusion 234
Acknowledgments 234
Part IX Keynote of FIEEC to CESA 3.0Congress on Automotive ElectronicSystems 235
24 Electro Technologies Play an Essential Role in Mobility, in the Economy and the Society as the Whole 236
Abstract 236
1 Presentation of the FIEEC 236
2 The Key Role of the Electro-Technologies in the Automotive Industry 237
3 A Partnership with All Stakeholders 238

Erscheint lt. Verlag 19.9.2015
Reihe/Serie Lecture Notes in Mobility
Zusatzinfo XIII, 245 p. 122 illus., 109 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Fahrzeugbau / Schiffbau
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Automotive electronics efficiency • Autonomous Driving • CESA 2014 • CESA 2014 conference • Dashboard interfaces • Driverless cars • Energy Consumption • Energy efficiency autonomous cars • Self-driving car efficiency
ISBN-10 3-319-19818-1 / 3319198181
ISBN-13 978-3-319-19818-7 / 9783319198187
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Manufacturing Excellence in der Smart Factory

von Jürgen Kletti; Jürgen Rieger

eBook Download (2023)
Springer Vieweg (Verlag)
69,99