Advances in Microbial Physiology

Advances in Microbial Physiology (eBook)

eBook Download: PDF | EPUB
2015 | 1. Auflage
504 Seiten
Elsevier Science (Verlag)
978-0-12-803333-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
128,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This volume of Advances in Microbial Physiology continues the long tradition of topical and important reviews in microbiology


Key features:

  • Contributions from leading authorities
  • Informs and updates on all the latest developments in the field

This volume of Advances in Microbial Physiology continues the long tradition of topical and important reviews in microbiology Contributions from leading authorities Informs and updates on all the latest developments in the field

Chapter Two

A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes


Ralf Rabus*; Sofia S. Venceslau; Lars Wöhlbrand*; Gerrit Voordouw; Judy D. Wall§,; Inês A.C. Pereira,1    * Institute for Chemistry & Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
† Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
‡ Department of Biological Sciences, University of Calgary, Calgary, Canada
§ Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
¶ Ecosystems and Networks Integrated with Genes and Molecular Assemblies, Berkeley, California, USA
1 Corresponding author: email address: ipereira@itqb.unl.pt

Abstract


Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.

Keywords

Sulphate-reducing prokaryotes

Sulphate-reducing bacteria

Sulphate reduction

Anaerobic respiration

Marine sediments

Hydrocarbon degradation

Metal reduction

Souring

Microbially influenced corrosion

Microbial energy conversion

Genomics

Genetics

Electron transfer

Ecophysiology

Microbiome

Habitats

Systems biology

Abbreviations

ANME anaerobic methanotrophs

AOM anaerobic oxidation of methane

Apr APS reductase

APS adenosine 5′-phosphosulphate

ATP adenosine triphosphate nucleotide

CMIC chemical microbially influenced corrosion

DMSP dimethylsulphoniopropionate

Dsr dissimilatory sulphite reductase

EMIC electrical microbially influenced corrosion

Etf electron-transferring flavoprotein

FBEB flavin-based electron bifurcation

Fdh formate dehydrogenase

FHL formate:hydrogen lyase

Flx flavin oxidoreductase

Hdr heterodisulphide reductase

HHQ 1,2,4-trihydroxybenzene

Hmc high molecular mass cytochrome c complex

LDET long-distance electron transfer

Ldh lactate dehydrogenase

LGT lateral gene transfer

Mcr methyl-coenzyme M reductase

MIC microbially influenced corrosion

MICC microbially induced concrete corrosion

MPN most probable number

MTB magnetotactic bacteria

Nfn NAD(H)/NADP(H) transhydrogenase

Nhc nine-haem cytochrome complex

NIWR near-injection wellbore region

Ohc octahaem cytochrome complex

OMZ oxygen minimum zone

PFL pyruvate-formate lyase

PFOR pyruvate:ferredoxin oxidoreductase

PWRI produced water reinjection

Qmo quinone-interacting membrane oxidoreductase complex

Qrc quinone-reductase complex

Rnf Rhodobacter nitrogen fixation complex

ROS reactive oxygen species

Sat ATP sulphurylase or sulphate adenylyltransferase

SLIC sequence ligation-independent cloning

SMTZ sulphate-methane-transition zone

SOB sulphur-oxidizing bacteria

SRB sulphate-reducing bacterium(a)

SRP sulphate-reducing prokaryote(s)

TMA trimethylamine

TMAO trimethylamine-N-oxide

Tmc tetraheme cytochrome membrane complex

TpIc3 type I cytochrome c3

TRAP tripartite ATP-independent periplasmic

1 Introduction


Microbial sulphate reduction is a process of enormous environmental and biogeochemical relevance, which is mainly associated with marine environments due to their high sulphate levels. Seawater sulphate concentrations have risen over geological time due to oxidative weathering of sulphide minerals on land, and there is an intimate connection between oceanic sulphate levels and the oxygen content of the earth's atmosphere (Berner & Canfield, 1989; Farquhar, Wu, Canfield, & Oduro, 2010). Marine sulphate constitutes the largest mobile sulphur reservoir in our planet, corresponding to an oxidant pool that is one order of magnitude larger than that of atmospheric oxygen (Hayes & Waldbauer, 2006). The sulphur cycle has, therefore, a direct impact on the redox balance of the oceans and atmosphere (Canfield, 2004; Halevy, Peters, & Fischer, 2012). Microbial reduction of sulphate to sulphide initiates and sustains the sulphur cycle and is one of the major biological processes in marine sediments (Jørgensen, 1982). A recent study of global marine sulphate reduction rates (SRRs) estimated that 11.3 Tmol of sulphate is reduced per year, corresponding to the oxidation of up to 30% of the organic carbon flux to the sea floor (Bowles, Mogollón, Kasten, Zabel, & Hinrichs, 2014). Microbial sulphate reduction induces a large mass-dependent fractionation between sulphate and sulphide and is the major process determining sulphur isotope fractionations preserved in geological records, which provide information on the oxidation state of the Earth's atmosphere starting in the early Proterozoic (Farquhar, Bao, & Thiemens, 2000; Johnston, 2011). For these reasons, sulphate-reducing prokaryotes (SRP) play a key role in our understanding of the biogeochemical sulphur and carbon cycles.

SRP are a heterogeneous group of anaerobic organisms that have the ability to respire sulphate, that is, to use sulphate as terminal electron acceptor for the oxidation of organic compounds or hydrogen, in a dissimilatory process that leads to the production of high levels of sulphide. Most of this sulphide is reoxidized by chemolithotrophic sulphur bacteria under oxic conditions or phototrophic sulphur bacteria under anoxic conditions, forming the basis of the biological sulphur cycle. The activity of SRP has important economic and environmental impact, mainly through their production of sulphide, which is both toxic and corrosive, but can also give rise to beneficial processes. Microbially induced corrosion of steel, concrete and iron surfaces is a problem of enormous economic consequences where SRP have been implicated, particularly in technical marine structures (Barton & Fauque,...

Erscheint lt. Verlag 17.7.2015
Mitarbeit Herausgeber (Serie): Robert K. Poole
Sprache englisch
Themenwelt Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Evolution
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Mikrobiologie / Immunologie
Technik
ISBN-10 0-12-803333-9 / 0128033339
ISBN-13 978-0-12-803333-3 / 9780128033333
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 16,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 26,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99