Science of Synthesis: Catalytic Transformations via C-H Activation Vol. 1 (eBook)

Jin-Quan Yu (Herausgeber)

eBook Download: PDF | EPUB
2016 | 1. Auflage
524 Seiten
Thieme (Verlag)
978-3-13-176681-6 (ISBN)

Lese- und Medienproben

Science of Synthesis: Catalytic Transformations via C-H Activation Vol. 1 -
Systemvoraussetzungen
Systemvoraussetzungen
259,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The reference work Science of Synthesis: Catalytic Transformations via C-H Activation covers the state of the art in C-H activation chemistry. Experts in the field present the best synthetic methods including typical or general experimental procedures. As such, this two volume set can serve as both a basis for the practical application of the techniques discussed, and as an educational resource to lay the foundations for future research.

Volume 1 concerns the formation of C-C bonds by both arene and hetarene C-H activation. For the arenes the material is subdivided into arylation (using palladium(0), palladium(II)/palladium(IV), palladium(II), and ruthenium(II) catalysts), vinylation (using various palladium and ruthenium(III) catalysts), and alkylation (using various metal catalysts in combination with either functionalized alkanes or alkenes). For the hetarenes, the related coupling strategies are covered as a single topic using a variety of metal catalysts and coupling partners.

Science of Synthesis 1
Title Page 6
Copyright 8
Preface 9
Abstracts 13
Catalytic Transformations via C—H Activation 19
Table of Contents 21
Introduction 27
1.1 C-C Bond Formation by Arene C-H Activation 31
1.1.1 Arylation Using a Palladium(0) Catalyst 31
1.1.1.1 Intramolecular C-H Arylation 34
1.1.1.1.1 Synthesis of Polycyclic Arenes 34
1.1.1.1.1.1 Coupling of Arenes with Haloarenes 34
1.1.1.1.1.2 Coupling of Arenes with Aryl Sulfonates 40
1.1.1.1.1.3 Coupling Involving Palladium Migration 41
1.1.1.1.2 Synthesis of Biaryls 43
1.1.1.1.2.1 Coupling of Arenes with Haloarenes 44
1.1.1.1.3 Synthesis of Hetarenes 47
1.1.1.1.3.1 Synthesis of Five-Membered Hetarenes 47
1.1.1.1.3.1.1 Coupling of Arenes with Haloarenes 47
1.1.1.1.3.1.2 Coupling of Arenes with Aryl Sulfonates 58
1.1.1.1.3.1.3 Coupling Involving Palladium Migration 60
1.1.1.1.3.2 Synthesis of Six- and Seven-Membered Hetarenes 62
1.1.1.1.3.2.1 Coupling of Arenes with Haloarenes 62
1.1.1.2 Intermolecular C-H Arylation 73
1.1.1.2.1 Non-Directed C-H Activation 73
1.1.1.2.1.1 Coupling of Arenes with Haloarenes 73
1.1.1.2.1.2 Coupling of Arenes with Aryl Sulfonates 82
1.1.1.2.2 Directing-Group-Assisted C-H Activation 83
1.1.1.2.2.1 Coupling of Arenes with Haloarenes 83
1.1.1.2.2.2 Coupling of Arenes with Aryl Sulfonates 90
1.1.2 Arylation Using a Palladium(II)/Palladium(IV) Catalyst System 95
1.1.2.1 Chelation-Assisted C(sp2)-H Arylation 96
1.1.2.1.1 Reaction Using Diaryliodonium Salts 97
1.1.2.1.2 Reaction Using Aryl Halides 102
1.1.2.1.3 Reaction Using Arenes 110
1.1.2.2 Non-Chelation-Assisted C(sp2)-H Arylation 113
1.1.2.2.1 Reaction Using Organometallic Reagents 113
1.1.2.2.2 Reaction Using Aryl Halides 114
1.1.2.2.3 Reaction Using Arenes 116
1.1.2.3 Conclusions 116
1.1.3 Arylation Using a Palladium(II) Catalyst 119
1.1.3.1 Reaction with Organometallic Reagents 119
1.1.3.1.1 Reaction with Organotin Reagents 120
1.1.3.1.2 Reaction with Organoboron Reagents 122
1.1.3.1.3 Reaction with Organosilicon Reagents 136
1.1.3.2 Reaction with Carboxylic Acids by Decarboxylation 139
1.1.4 Arylation Using a Ruthenium(II) Catalyst 145
1.1.4.1 Factors Affecting Arylation 147
1.1.4.1.1 Catalyst Effects 147
1.1.4.1.1.1 Use of Dimeric Ruthenium(II) Chloride–Benzene or Related Complexes as the Catalyst 147
1.1.4.1.1.2 Use of Dimeric Ruthenium(II) Chloride–p-Cymene as the Catalyst 149
1.1.4.1.1.3 Use of Ruthenium(III) Chloride Hydrate as the Catalyst 150
1.1.4.1.1.4 Use of Ruthenium(II) Carboxylate–p-Cymene Complexes as the Catalyst 151
1.1.4.1.1.5 Use of Ruthenium(II)–Alkylidene Complexes as the Catalyst 154
1.1.4.1.1.6 Use of Ruthenium(II)–Alkenylphosphine Complexes as the Catalyst 155
1.1.4.1.1.7 Use of Ruthenium/Cerium(IV) Oxide as the Catalyst 155
1.1.4.1.2 Ligand Effects 156
1.1.4.1.3 Additive Effects 157
1.1.4.1.3.1 Use of Phosphine Oxides as the Additive 157
1.1.4.1.3.2 Use of Potassium Acetate as the Additive 158
1.1.4.1.3.3 Use of Potassium Pivalate as the Additive 160
1.1.4.1.3.4 Use of Potassium Adamantane-1-carboxylate as the Additive 161
1.1.4.1.3.5 Use of Potassium Mesitylenecarboxylate as the Additive 163
1.1.4.1.4 Leaving Group Effects 166
1.1.4.1.4.1 Use of Iodide as the Leaving Group 166
1.1.4.1.4.2 Use of Bromide as the Leaving Group 167
1.1.4.1.4.3 Use of Chloride as the Leaving Group 167
1.1.4.1.4.4 Use of 4-Toluenesulfonate as the Leaving Group 167
1.1.4.1.5 Solvent Effects 170
1.1.4.1.5.1 Use of Arenes as the Solvent 170
1.1.4.1.5.2 Use of 1-Methylpyrrolidin-2-one as the Solvent 170
1.1.4.1.5.3 Use of Diethyl Carbonate as the Solvent 170
1.1.4.1.5.4 Use of Water as the Solvent 171
1.1.4.1.6 Directing Group Effects 171
1.1.4.1.6.1 ortho-Directed Reaction with Organometallic Compounds 173
1.1.4.2 Applications of Arylation in the Synthesis of Bioactive Compounds 174
1.1.4.2.1 Synthesis of Cholesteryl Ester Transfer Protein Inhibitors 174
1.1.4.2.2 Synthesis of Angiotensin II Receptor Blockers 176
1.1.4.3 Conclusions 177
1.1.5 Vinylation Using a Palladium Catalyst 181
1.1.5.1 Vinylation by Oxidative Heck-Type Coupling 181
1.1.5.1.1 Vinylation with a Directing Group on the Arene Component 182
1.1.5.1.1.1 Use of Amide Directing Groups 182
1.1.5.1.1.2 Use of Trifluoromethanesulfonamide Directing Groups 186
1.1.5.1.1.3 Use of Urea and Guanidine Directing Groups 187
1.1.5.1.1.4 Use of Oxime Directing Groups 189
1.1.5.1.1.5 Use of Pyridine Directing Groups 189
1.1.5.1.1.6 Use of Amine Directing Groups 193
1.1.5.1.1.7 Use of Alcohol Directing Groups 195
1.1.5.1.1.8 Use of Carboxylic Acid Directing Groups 197
1.1.5.1.1.9 Use of Ether and Thioether Directing Groups 201
1.1.5.1.1.10 Use of Silanol Directing Groups 202
1.1.5.1.1.11 Use of Alkene Directing Groups 205
1.1.5.1.2 Vinylation with a Directing Group on the Alkene Component 205
1.1.5.1.3 Vinylation without a Directing Group 207
1.1.5.1.4 Enantioselective Oxidative Heck-Type Coupling 211
1.1.5.2 Vinylation by Direct Arylation of Vinyl Halides 212
1.1.5.2.1 Intramolecular Direct Arylation 213
1.1.5.2.2 Intermolecular Direct Arylation 216
1.1.5.2.3 Enantioselective Direct Arylation 219
1.1.6 Vinylation Using a Rhodium(III) Catalyst 223
1.1.6.1 Oxidative Coupling of Arenes 225
1.1.6.1.1 Reaction with Alkenes 225
1.1.6.1.1.1 Vinylation/Esterification of Benzoic Acids 225
1.1.6.1.1.2 Vinylation/Decarboxylation of Benzoic Acids 227
1.1.6.1.1.3 Vinylation of Aryl Ketones 228
1.1.6.1.1.4 Vinylation of Benzoates and Benzaldehydes 228
1.1.6.1.1.5 Vinylation of Acetanilides and Benzanilides 230
1.1.6.1.1.6 Vinylation of Phenylazoles, Phenylpyridines, and (Phenylamino)pyridines 232
1.1.6.1.1.7 Vinylation of Phenylphosphine Oxides, Phenylphosphonates, and Phenylphosphonamides 234
1.1.6.1.2 Reaction with Alkynes 235
1.1.6.1.2.1 Annulation of Benzoic Acids 235
1.1.6.1.2.2 Annulation of Benzyl Alcohols and Phenols 236
1.1.6.1.2.3 Annulation of Aryl Ketones 238
1.1.6.1.2.4 Annulation of Acetanilides and Benzamides 239
1.1.6.1.2.5 Annulation of Aryl Imines 242
1.1.6.1.2.6 Annulation of Phenylazoles and Phenylindoles 244
1.1.6.1.2.7 Annulation of Arylphosphinic Acids and Arylphosphonamides 248
1.1.6.2 Non-Oxidative Coupling of Arenes 251
1.1.6.2.1 Reaction with Alkynes 251
1.1.7 Metal-Catalyzed C-H Alkylation Using RX Compounds 255
1.1.7.1 Catalytic Arene C(sp2)-H Alkylation Reactions via C(sp3)-X Bond Cleavage (X = Cl, Br, I) 256
1.1.7.2 Catalytic Arene C(sp2)-H Alkylation Reactions via C-B, C-Si, and C-Sn Bond Cleavage 268
1.1.7.3 Catalytic Arene and Alkene C(sp2)-H Alkylation Reactions via C-O and C-S Bond Cleavage 279
1.1.7.4 Conclusions and Future Outlook 293
1.1.8 Metal-Catalyzed Alkylation Using Alkenes 297
1.1.8.1 Alkylation Using Ruthenium Catalysts 297
1.1.8.1.1 Carbonyl-Directed Reactions 297
1.1.8.1.2 Pyridine-Directed Reactions 301
1.1.8.1.3 Reactions Using a Bidentate Directing Group 302
1.1.8.2 Alkylation Using Rhodium Catalysts 304
1.1.8.2.1 Imine-Directed Reactions 304
1.1.8.2.2 Carbonyl-Directed Reactions 307
1.1.8.3 Alkylation Using Iridium Catalysts 309
1.1.8.3.1 Carbonyl-Directed Reactions 309
1.1.8.3.2 Pyridine-Directed Reactions 310
1.1.8.4 Alkylation Using Cobalt Catalysts 311
1.1.8.4.1 Pyridine-Directed Reactions 311
1.1.8.4.2 Imine-Directed Reactions 314
1.1.8.4.3 Amide-Directed Reactions 318
1.1.8.5 Alkylation Using Other Catalysts 319
1.1.8.5.1 Rhenium-Catalyzed Reactions 319
1.1.8.5.2 Yttrium- or Scandium-Catalyzed Reactions 320
1.1.8.6 Applications in Natural Product Synthesis 321
1.2 C-C Bond Formation by Hetarene C-H Activation 325
1.2.1 Hetarene C-C(sp3) Bond Formation 328
1.2.1.1 Hetarene C-H Activation/Alkylation Reactions 328
1.2.1.1.1 Alkylation with Alkyl Electrophiles 328
1.2.1.1.2 Alkylation with Alkenes 339
1.2.1.1.3 Reductive Alkylation with Alkynes 358
1.2.1.1.4 Alkylation with In Situ Generated Carbenes 359
1.2.1.2 Hetarene C-H Activation/Carbonyl Addition Reactions 361
1.2.2 Hetarene C-C(sp2) Bond Formation 366
1.2.2.1 Hetarene C-H Activation/Alkenylation Reactions 366
1.2.2.1.1 Alkenylation with Alkenyl Electrophiles 366
1.2.2.1.2 Alkenylation with Alkenes 369
1.2.2.1.3 Alkenylation with Alkynes 381
1.2.2.2 Hetarene C-H Activation/Cycloaddition Reactions 389
1.2.2.3 Hetarene C-H Activation/Arylation Reactions 393
1.2.2.3.1 Arylation with Aryl Electrophiles/Nucleophiles 393
1.2.2.3.2 Arylation with Arenes 423
1.2.2.3.3 Arylation with Hetarenes: Homocoupling of Hetarenes 433
1.2.2.3.4 Arylation with Hetarenes: Cross Coupling of Hetarenes 436
1.2.2.4 Hetarene C-H Activation/Acylation Reactions 449
1.2.2.4.1 Acylation with Acyl Electrophiles 449
1.2.2.4.2 Acylation through Carbonylation 450
1.2.2.5 Hetarene C-H Activation/Carboxylation Reactions 454
1.2.3 Hetarene C-C(sp) Bond Formation 456
1.2.3.1 Hetarene C-H Activation/Alkynylation Reactions 456
1.2.3.2 Hetarene C-H Activation/Cyanation Reactions 462
Keyword Index 475
Author Index 507
Abbreviations 521

Introduction


J.-Q. Yu

The inertness of C—H bonds (excluding acidic C—H bonds) has, since the 1960s, fueled curiosity-driven chemical research. The potential to replace C—H bonds with C—C and C—heteroatom bonds has fascinated chemists in the field of catalysis and synthesis as this offers an untapped avenue for developing new reactions that can be used as new disconnections for making molecules. As a consequence, a number of approaches have been developed to cleave and functionalize C—H bonds: Biomimetic oxidation based on iron, manganese, copper, or cobalt catalysts has led to the accumulation of a vast amount of fundamental knowledge of oxidation chemistry; carbene and nitrene insertion are among the earliest C—H activation reactions that have found their way into synthetic applications; and radical C—H abstraction has also been explored in the past and has recently attracted new interest. That said, based on the sheer number of publications, it is probably fair to say that metal insertions into C—H bonds to form well-defined carbon–metal species and subsequent functionalization of these intermediates is the most extensively investigated of the C—H functionalization techniques. Despite the rich history of C—H activation chemistry, the pace of growth of the field in the past decade is unprecedented. Major advances in two directions are mainly responsible for these new developments: First, many new redox catalytic cycles have been invented or improved to accommodate C—H activation reactions. Second, new reactivity has been obtained through weak coordination of a broad range of substrates with metal catalysts.

Given the advances made in the field of C—H activation, and the breadth of applicability of this technique in modern organic synthesis, the editors of Science of Synthesis consider that the time is ripe for an up to date and focused new addition to the Reference Library on this high-impact topic that is sure to help shape the future direction of chemical science. The organization of this two-volume series is based on the nature of the bond formed to carbon in place of the C—H bond. Each chapter covers a specific methodology so that the hierarchy of the work is kept as flat as possible. As such, experts in the field critically review the state of the art in areas of C—H activation chemistry, and a wide variety of methods by which various bonds to carbon (i.e., C—C, C—Hal, C—N, C—O, and C—B bonds) may be formed are examined. Specific focus is applied to the nature of the substrate, the transition-metal catalyst used, and any specific reagents or techniques that may be applied. To aid practical application of the information contained herein, both for teaching and research, the authors have been encouraged to include typical or general experimental procedures for the best methods.

Volume 1 concerns the formation of C—C bonds by both arene and hetarene C—H activation. For arene C—H activation the material is subdivided by coupling partner (arylation, vinylation, and alkylation) and also by the catalyst system used. The first four sections cover arylation. A chapter by V. Gevorgyan and F. S. Melkonyan ( Section 1.1.1) discusses reaction using a palladium(0) catalyst. Both intra- and intermolecular coupling to give various polycyclic and biaryl products, and the effects on reaction of directing groups are described. The second chapter, by C.-H. Cheng and P. Gandeepan ( Section 1.1.2), covers arylation using a palladium(II)/palladium(IV) catalyst system, and the role of chelation assistance in reaction is again emphasized. The third contribution, written by W. Su and M. Zhang ( Section 1.1.3), discusses arylation using palladium(II) catalysts in the presence of organometallic reagents. The role of palladium in decarboxylative coupling of carboxylic acids is also described. The fourth chapter, by M. Seki ( Section 1.1.4), features arylation using ruthenium(II) catalysts; the factors affecting the reaction (including catalyst, ligand, additive, leaving group, and solvent effects) are described in a logical, systematic manner. The next two contributions cover vinylation of arenes. The first of these, by V. M. Dong and P. K. Dornan ( Section 1.1.5), discusses vinylation using palladium catalysts, including oxidative Heck-type coupling of arenes (and the effect thereupon of directing groups) and direct arylation of vinyl halides. The second vinylation section, by M. Miura and T. Satoh ( Section 1.1.6), covers vinylation using rhodium(III) catalysts and focuses upon both oxidative and non-oxidative coupling of arenes with alkenes and alkynes. This is followed by two chapters on the alkylation of arenes. The first of these, written by C. S. Yi ( Section 1.1.7), covers metal-catalyzed alkylation using various electrophiles [RX compounds, where X is a halogen (Cl, Br, I), metalloid (B, Si, Sn), or chalcogen (O, S)]. The second alkylation section, by T. Shibata and K. Tsuchikama ( Section 1.1.8), discusses metal-catalyzed alkylation using alkenes; the role of various catalysts (Ru, Rh, Ir, Co, etc.) and substrate-bound directing groups is described. The formation of C—C bonds by hetarene C—H activation is, in contrast, covered by Y. Nakao as a single topic in  Section 1.2. The coupling of hetarenes with a variety of C(sp3) centers (alkylation), C(sp2) centers (arylation, vinylation), and C(sp) centers (alkynylation, cyanation) is described systematically in this sizable contribution in a logical, easily digested fashion.

Volume 2 concerns the formation of C—C bonds by C—H activation of non-(het)arene substrates as well as by C—H activation using special reagents or techniques. The formation of C—heteroatom bonds by (predominantly arene) C—H activation is also included here. For C—C bond formation, the material is initially subdivided by substrate. The first contribution, by G. Liu and P. Chen (Section 2.1), covers allylic C—H activation and the material is categorized systematically depending on the catalyst used. The second chapter, by O. Baudoin (Section 2.2), covers alkyl C—H activation. Various directing effects, including heteroatom direction, and oxidative addition processes are described therein. A number of “special topics” for C—C bond formation are then discussed independently of the substrate used. The first of these techniques, the use of carbenes for C—H activation, is presented by X. P. Zhang and X. Cui (Section 2.3) with both intra- and intermolecular carbene insertion discussed. This is followed by coverage of C—H activation using radicals, as presented by W.-Y. Yu and W.-W. Chan (Section 2.4), which includes discussion of transition-metal-catalyzed acylation, metal-free arylation, and Minisci-type hetarene functionalization. Subsequently, double C—H activation is described by S.-L. You and J.-B. Xia (Section 2.5), who discuss oxidative homocoupling and cross-coupling methods as well less common intramolecular double C—H activation processes. The next contribution, by C. Liu, H. Zhang, and A. Lei (Section 2.6), covers C—C bond formation by carboxylation or carbonylation and, as in several other areas, the effect of directing groups is highlighted.

For C—heteroatom bond formation, the material discussed concerns predominantly arene substrates, and is thus subdivided by the nature of the bond formed. The first chapter on this topic, by M. S. Sanford and A. Cook (Section 2.7), concerns C—halogen bond formation; various ligand effects, as well as reaction in the absence of directing groups, are described. The discussion of the formation of C—N bonds is divided into two parts: The first contribution, by P. Dauban and B. Darses (Section 2.8), concerns C—N bond formation using palladium catalysis. Intramolecular reaction to form five- and six-membered rings is described, as is ortho-amidation in intermolecular processes. The second contribution, by S. B. Blakey and N. Mace Weldy (Section 2.9), covers nitrene insertion; both inter- and intramolecular amination are discussed. Coverage of the formation of C—O bonds is likewise split into two chapters. The first of these, by Y. Hitomi and K. Arakawa (Section 2.10), covers biomimetic and organocatalytic methods for arene C—H oxidation and comments upon the use of various metal complexes (porphyrin, non-heme iron, etc.) and reagents (e.g., phthaloyl peroxide). The second oxidation chapter, by G.-W. Wang and D.-D. Li (Section 2.11), describes arene C—H activation via metal-catalyzed oxidation, and the use of various metal catalysts in inter- and intramolecular processes is discussed systematically. The second volume concludes with discussion of the formation of C—B bonds via arene C—H activation in a chapter by J. M. Lassaletta, A. Ros, and R. Fernández (Section 2.12). Non-directed borylation is covered, as are various directed methods including site-selective, relay-directed, and outer-sphere ortho-C—H borylation. The formation of C—B bonds is of special interest because of the potential applications of aromatic organoboranes in synthesis, not only in cross-coupling (Suzuki–Miyaura) chemistry, but also in many other...

Erscheint lt. Verlag 23.3.2016
Verlagsort Stuttgart
Sprache englisch
Themenwelt Medizin / Pharmazie Pflege
Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte C-H Activation • Chemical Synthesis • Chemie • Chemische Synthese • Chemistry • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • Organic Chemistry • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Reactions • reference work • Review • review organic synthesis • review synthetic methods • Synthese • synthesis • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation
ISBN-10 3-13-176681-6 / 3131766816
ISBN-13 978-3-13-176681-6 / 9783131766816
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Wasserzeichen)
Größe: 16,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
79,99