Thermal Sensors -

Thermal Sensors (eBook)

Leon Islas, Feng Qin (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
394 Seiten
Elsevier Science (Verlag)
978-0-12-800448-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
155,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Current Topics in Membranes is targeted toward scientists and researchers in biochemistry and molecular and cellular biology, providing the necessary membrane research to assist them in discovering the current state of a particular field and in learning where that field is heading.

This volume presents an up to date presentation of current knowledge and problems in the field of thermal receptors. This is a rapidly evolving research area and the book contains important contributions from some of the leaders in the field.


  • Written by leading experts
  • Contains original material, both textual and illustrative, that should become a very relevant reference material
  • The material is presented in a very comprehensive manner
  • Both researchers in the field and general readers should find relevant and up-to-date information

Current Topics in Membranes is targeted toward scientists and researchers in biochemistry and molecular and cellular biology, providing the necessary membrane research to assist them in discovering the current state of a particular field and in learning where that field is heading. This volume presents an up to date presentation of current knowledge and problems in the field of thermal receptors. This is a rapidly evolving research area and the book contains important contributions from some of the leaders in the field. Written by leading experts Contains original material, both textual and illustrative, that should become a very relevant reference material The material is presented in a very comprehensive manner Both researchers in the field and general readers should find relevant and up-to-date information

Front 
1 
CURRENT TOPICS IN MEMBRANES, VOLUME 74 3
Current Topics in Membranes 4
Copyright 5
CONTENTS 6
CONTRIBUTORS 10
PREFACE 14
PREVIOUS VOLUMES IN SERIES 16
Chapter One - Thermal Effects and Sensitivity of Biological Membranes 20
1. INTRODUCTION 20
2. RESPONSE OF ORGANISMS TO CHANGES IN TEMPERATURE 21
3. GENERAL THERMAL DEPENDENCE OF MEMBRANE PROPERTIES 24
4. PYROELECTRICITY 28
5. INFRA RED RADIATION AND CAPACITANCE 29
6. ACTIVATION OF SPECIFIC CHANNELS BY IR 31
7. CONCLUSIONS 32
ACKNOWLEDGMENTS 32
REFERENCES 32
Chapter Two - Temperature Sensing by Thermal TRP Channels: Thermodynamic Basis and Molecular Insights 38
1. INTRODUCTION 39
2. PRINCIPLES OF TEMPERATURE ACTIVATION 41
3. TEMPERATURE DEPENDENCE OF THERMAL TRP CHANNELS 43
4. KINETICS AND ENERGETICS OF THERMAL CHANNELS 46
5. HYSTERESIS OF TEMPERATURE-DEPENDENT GATING 49
6. HEAT CAPACITY THEORY 51
7. ORIGINS OF THERMAL SENSITIVITY 54
8. DISTRIBUTION OF THERMAL SENSITIVITY: GLOBAL OR LOCAL? 56
9. IDENTIFICATION OF MOLECULAR BASIS OF THERMAL SENSITIVITY 59
10. SUMMARY 65
REFERENCES 65
Chapter Three - Gating of Thermally Activated Channels 70
1. INTRODUCTION 71
2. TEMPERATURE-SENSITIVE CHANNEL DIVERSITY 74
3. ENERGETICS OF TEMPERATURE-SENSITIVE CHANNELS 80
4. GATING KINETICS IN THERMOTRP CHANNELS 86
5. MOLECULAR DETERMINANTS OF TEMPERATURE SENSING IN TRP CHANNELS 91
6. CODA 97
ACKNOWLEDGMENTS 99
REFERENCES 99
Chapter Four - TRPA1 Channels: Chemical and Temperature Sensitivity 108
1. INTRODUCTION 109
2. ACTIVATION AND REGULATION OF TRPA1 BY CHEMICAL COMPOUNDS 110
3. TEMPERATURE SENSITIVITY OF TRPA1 120
ACKNOWLEDGMENTS 126
REFERENCES 126
Chapter Five - Temperature Sensitivity of Two-Pore (K2P) Potassium Channels 132
1. INTRODUCTION 133
PHYSIOLOGICAL ROLE OF HEAT-ACTIVATED K2P CHANNELS 134
3. MOLECULAR MECHANISM OF TEMPERATURE GATING OF TREK-1, TREK-2, AND TRAAK 136
4. HEAT- AND MECHANOSENSITIVITY OF K2PS: DIFFERENT FACETS OF THE SAME PROCESS? 143
5. FUTURE STUDIES OF K2P CHANNEL THERMAL SENSITIVITY 144
ACKNOWLEDGMENTS 146
REFERENCES 146
Chapter Six - Lipid Modulation of Thermal Transient Receptor Potential Channels 154
1. INTRODUCTION 155
2. PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE (PIP2) 158
3. GPCR SIGNALING PATHWAYS 167
4. N-3 PUFAS AND DERIVATIVES 174
5. OXIDIZED LIPIDS 176
6. LYSOPHOSPHOLIPIDS 177
7. CHOLESTEROL AND STEROIDS 179
8. OTHER LIPIDS 181
9. CONCLUDING REMARKS 182
ACKNOWLEDGMENTS 183
REFERENCES 183
Chapter Seven - Structure of Thermally Activated TRP Channels 200
1. INTRODUCTION 201
2. TRP CHANNELS AS THERMAL SENSORS 203
3. OUTLOOK AND PROSPECTIVE 222
REFERENCES 223
Chapter Eight - Thermal Sensitivity of CLC and TMEM16 Chloride Channels and Transporters 232
1. INTRODUCTION 232
2. THERMAL NOCICEPTION 233
3. TMEM16A 234
4. CLC PROTEINS 238
5. CONCLUSIONS 245
ACKNOWLEDGMENTS 245
REFERENCES 245
Chapter Nine - Structure and Function of the ThermoTRP Channel Pore 252
1. INTRODUCTION 253
2. STRUCTURAL FEATURES OF A THERMOTRP CHANNEL PORE 254
3. FUNCTIONAL TESTS OF PORE STRUCTURES 257
4. ACTIVATION GATING OF TRPV1 262
5. PORE DILATION 269
6. CONCLUDING REMARKS 271
ACKNOWLEDGMENTS 272
REFERENCES 272
Chapter Ten - Temperature-Sensitive Gating of Voltage-Gated Proton Channels 278
1. INTRODUCTION 279
2. PROPERTIES AND PHYSIOLOGICAL FUNCTIONS OF HV 280
3. THERMOSENSITIVE FUNCTIONS OF CELLS EXPRESSING HV 285
4. TEMPERATURE DEPENDENCE OF NATIVE HV 288
5. MOLECULAR STRUCTURE OF HV1/VSOP 289
6. THERMAL STABILITY OF THE COILED-COIL DOMAIN AND THE THERMAL SENSITIVITY OF HV 296
7. MODEL OF THERMOSENSITIVE CHANNEL GATING 305
REFERENCES 307
Chapter Eleven - Intimacies and Physiological Role of the Polymodal Cold-Sensitive Ion Channel TRPM8 312
1. INTRODUCTION 313
2. TRPM8, A COLD-ACTIVATED POLYMODAL ION CHANNEL 313
3. PHYSIOLOGICAL ROLE OF TRPM8 319
4. TRAFFICKING, N-GLYCOSYLATION AND MODULATION OF TRPM8 CHANNEL FUNCTION 327
5. CONCLUSIONS 336
ACKNOWLEDGMENTS 336
REFERENCES 337
Chapter Twelve - Thermally Activated TRPV3 Channels 344
1. INTRODUCTION 345
2. EXPRESSION AND FUNCTION OF TRPV3 347
3. TRPV3 ACTIVATORS 360
4. TRPV3 REGULATORS 368
5. CONCLUSIONS 374
ACKNOWLEDGMENTS 374
REFERENCES 375
Index 384
COLOR PLATES 396

Chapter Two

Temperature Sensing by Thermal TRP Channels


Thermodynamic Basis and Molecular Insights


Qin Feng     Department of Physiology and Biophysics, State University of New York, Buffalo, New York, USA

Abstract


All organisms need to sense temperature in order to survive and adapt. But how they detect and perceive temperature remains poorly understood. Recent discoveries of thermal Transient Receptor Potential (TRP) ion channels have shed light on the problem and unravel molecular entities for temperature detection and transduction in mammals. Thermal TRP channels belong to the large family of transient receptor potential channels. They are directly activated by heat or cold in physiologically relevant temperature ranges, and the activation is exquisitely sensitive to temperature changes. Thermodynamically, this strong temperature dependence of thermal channels occurs due to large enthalpy and entropy changes associated with channel opening. Thus understanding how the channel proteins obtain their exceptionally large energetics is central toward determining functional mechanisms of thermal TRP channels. The purpose of this chapter is to provide a comprehensive review on critical issues and challenges facing the problem, with emphases on underlying biophysical and molecular mechanisms.

Keywords


Temperature-dependent gating; Temperature sensor; Thermal receptors; TRP channels

1. Introduction


The detection of ambient temperature is necessary for most organisms to seek preferred living temperatures and to avoid potentially damaging conditions. The detection of internal body temperature is also required for species capable of thermal regulation. In some species thermal sensation has even become the sixth sense. Snakes possess heat vision to detect a temperature difference between a moving prey and its surroundings on the scale of milliKelvins (Bulloc & Dieck, 1956). Fire-chasing beetles can sense infrared radiation produced by fires up to 130 km (Hart, 1998; Schmitz & Bleckmann, 1998). Despite such remarkable features, however, how temperature is detected, perceived, and regulated remains poorly understood in most organisms.
Thermal sensation in mammals involves peripheral sensory nerves innervating the skin and internal organs. The other end of the nerves enters the central nervous systems in the superficial dorsal horn of the spinal cord and end in the thalamus and somatosensory cortex where consciousness is made about what is happening on the surface—warm, cool, hot, or cold. As early as 1882, Blix discovered that a person's thermal sensations were associated with the stimulation of localized sensory spots on the skin (Blix, 1882). The modern pursuit of thermal sensation based on electrical recordings from skin-nerve preparations demonstrated unequivocally the existence of thermoreceptors (Hensel, 1974; Spray, 1986). On the basis of their conduction velocities, they are known to be small-diameter, slowly conducting unmyelinated C fibers and larger, more rapidly conducting, thinly myelinated Aδ fibers.
The sensations of temperature and pain are closely related. They both involve the C fibers, which are responsive to noxious thermal, mechanical, and chemical stimuli. The pain evoked by heat produces a sensation of burning (LaMotte & Campbell, 1978; Torebjork & Hallin, 1973), whereas the pain induced by cold can have various qualities including aching, burning, and pricking (Chery-Croze, 1983; Kreh et al., 1984; Lewis & Love, 1926; Rainville et al., 1992; Wahren, Torebjork, & Jorum, 1989; Wolf & Hardy, 1941; Yarnitsky & Ochoa, 1990). Temperatures that are normally innocuous can become noxious under pathological conditions (Julius & Basbaum, 2001; Levine et al., 1999; Sato et al., 2000; Takahashi, Sato, & Mizumura, 2003). Many forms of clinical pain are related to disorders of thermal sensation.
Although cutaneous thermal receptors had been implied decades ago, their molecular entities have only begun to emerge recently. Capsaicin-activated ion channels are well known for their roles in nociception and underlie the hallmark sensitivity of nociceptive neurons to chili peppers (Jancso, 1955; Jancso, Jancso-Gabor, & Szolcsanyi, 1967; Szolcsanyi & Jancso-Gabor, 1975, 1976; Wood, 1993). The seminal study of cloning and characterization of the channel leads to identification of the first molecular transducer in thermal sensation and nociception (Caterina et al., 1997). Subsequent searches for its homologs uncover a large number of related proteins in mammalian genomes. Collectively these channels fund the now rapidly growing transient receptor potential superfamily. Today, the TRP family contains 28 members and falls into seven main subfamilies (Clapham, 2003), TRPC (canonical), TRPV (vanilloid), TRPM (mela-statin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin), and TRPN (NOMPC). Several members across different subfamilies have been found to be activated by temperature with distinct thermal properties. Their responsiveness ranges are correlated well with physiological temperatures causing the sensations of warm, cool, hot, and cold, thus supporting a general role for these thermal TRP channels in nociception and thermal sensation (Patapoutian et al., 2003). Plant-derived natural products that mimic temperature sensations also activate thermal TRP channels (Xu et al., 2006). The disruption of thermal TRP genes in mice results in deficient thermal sensitivity and reduced chemical and thermal hyperalgesia (Bautista et al., 2007; Caterina et al., 2000; Davis et al., 2000; Dhaka et al., 2007; Moqrich et al., 2005). Both pharmacological and behavioral characteristics support thermal TRP channels as key components on thermal and pain transduction pathways.
Thermal TRP channels are not only essential to acute nociception but are also substrates of chronic inflammatory mediators released in pathological pain states. It has been suggested that they contribute to such physiopathological conditions as inflammatory hyperalgesia, diabetic neuropathy, neuropathic pain associated with nerve lesion, etc. (Akbar et al., 2008; Cantero-Recasens et al., 2010; Engler et al., 2007; Meents, Neeb, & Reuter, 2010; Szallasi, 2002; Tsavaler et al., 2001; Valdes et al., 2011; Wondergem & Bartley, 2009; Wondergem et al., 2008; Yamamura et al., 2008). Owing to their significant roles in chronic pain, thermal TRP channels have become attractive targets for development of novel pain therapies that prevent generation and transduction of pain (Szallasi, Cruz, & Geppetti, 2006; TRPM, 2011).
Exquisite thermal sensitivity is a unique feature of thermal TRP channels and underlies their biological functions. All ion channels are sensitive to temperature, but few are directly activated by temperature and none has a sensitivity close to that of thermal TRP channels. Q10 is a common measurement of temperature dependence of a protein and describes the fold-change in response when temperature is increased by 10°. Whereas most ion channels have a Q10 in the range of 2–3 (DeCoursey & Cherny, 1998; Hille, 2001), thermal TRP channels reach a Q10 > 100 (Leffler et al., 2007; Yao, Liu, & Qin, 2010a, 2010b, 2011). This strong temperature dependence enables thermal TRP channels to discriminate small temperature gradients, but it also raises interesting questions on how these channels obtain the unusually strong thermal sensitivity. Presently, there is still a limited understanding of the issue owing to inherent complexity of the problem. Compared to voltage- or ligand-gated channels, the study of thermal TRP channels is still in its infancy. Below we will provide an overview on the status of the field, focusing on the biophysical and thermodynamic mechanisms and the molecular basis underlying the thermal sensitivity of the channels.

2. Principles of Temperature Activation


By Boltzmann equation the opening of an ion channel is determined by its free energy difference between the closed state and the open state (Hille, 2001):

o=11+eΔGRT

where ΔG is the free energy change and R and T have their standard definitions. The free energy change is temperature dependent and can be represented explicitly in T by ΔG = ΔH  T ΔS where ΔH and ΔS are enthalpy change and entropy change, respectively. Thus the opening of a channel is related to temperature by

o=11+eΔHRT−ΔSR.

This simple equation indicates that the thermal sensitivity of a channel lies in the enthalpy change during opening. The sign of the enthalpy change dictates the polarity of the thermal sensitivity: the channel is heat sensitive if ΔH > 0 and conversely cold sensitive. The opening becomes temperature independent if the net enthalpy change is vanished, which could occur if the opening and closing rates involve...

Erscheint lt. Verlag 3.11.2014
Sprache englisch
Themenwelt Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-12-800448-7 / 0128004487
ISBN-13 978-0-12-800448-7 / 9780128004487
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 16,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 12,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99