Science of Synthesis Knowledge Updates 2011 Vol. 2 (eBook)
558 Seiten
Thieme (Verlag)
978-3-13-178741-5 (ISBN)
Science of Synthesis: Knowledge Updates 2011/2 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 14
Table of Contents 16
Volume 3: Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au) 32
3.6 Product Class 6: Organometallic Complexes of Gold 32
3.6.11 Organometallic Complexes of Gold (Update 1) 32
3.6.11.1 Gold-Catalyzed Cycloisomerizations of Enynes 32
3.6.11.1.1 Method 1: Cycloisomerization of 1,6-Enynes 34
3.6.11.1.1.1 Variation 1: Formation of 1,3-Dienes 34
3.6.11.1.1.2 Variation 2: Formation of Cyclobutenes or Cyclobutanones 39
3.6.11.1.1.3 Variation 3: Formation of Cyclopropyl Rings 41
3.6.11.1.1.4 Variation 4: Formation of Fused Rings by Cycloisomerization of Substituted 1,6-Enynes by Friedel–Crafts-Type Processes 43
3.6.11.1.2 Method 2: Cycloisomerization of Dienynes 46
3.6.11.1.3 Method 3: Cycloisomerization of Oxo-1,6-enynes 49
3.6.11.1.3.1 Variation 1: Applications of the Cycloisomerization of Oxo-1,6-enynes in Total Synthesis 53
3.6.11.1.4 Method 4: Inter- and Intramolecular Addition of Nucleophiles to 1,6-Enynes 55
3.6.11.1.5 Method 5: Cycloisomerization of 1,5-Enynes 64
3.6.11.1.6 Method 6: Inter- and Intramolecular Addition of Nucleophiles to 1,5-Enynes 76
3.6.11.1.7 Method 7: Cycloisomerization of 1,n-Enynes via Migration of Propargyl Groups 80
3.6.11.1.8 Method 8: Cycloisomerization of 1,7- and Higher Enynes 90
3.6.12 Organometallic Complexes of Gold (Update 2) 102
3.6.12.1 Gold-Catalyzed Propargylic Rearrangements 102
3.6.12.1.1 Synthetic Method Development Based on Gold-Catalyzed 3,3-Rearrangements of Propargylic Carboxylates 102
3.6.12.1.1.1 Reactions via Gold-Containing Oxocarbenium Intermediates 106
3.6.12.1.1.1.1 Method 1: Reactions Using Indole-3-acetyl as the Acyl Group 107
3.6.12.1.1.1.2 Method 2: Reactions of Substrates with Functionality at the Alkyne Terminus of the Propargylic Group 109
3.6.12.1.1.1.2.1 Variation 1: Using Enyne Substrates 110
3.6.12.1.1.1.2.2 Variation 2: Using 4-(Trimethylsilyl)but-2-ynyl Substrates 112
3.6.12.1.1.1.3 Method 3: Reactions of 1-Arylpropargylic Carboxylates 112
3.6.12.1.1.1.4 Method 4: Reactions with Hydrolytic Treatment 113
3.6.12.1.1.1.4.1 Variation 1: Formation of a-Unsubstituted Enones 113
3.6.12.1.1.1.4.2 Variation 2: Formation of a-Iodo- or a-Bromoenones 114
3.6.12.1.1.1.5 Method 5: Intramolecular Acyl Migration 115
3.6.12.1.1.1.6 Method 6: Reactions Incorporating Gold(I)/Gold(III) Catalysis 117
3.6.12.1.1.1.6.1 Variation 1: Gold-Catalyzed Oxidative Homocoupling 117
3.6.12.1.1.1.6.2 Variation 2: Gold-Catalyzed Oxidative Cross-Coupling Reaction 118
3.6.12.1.1.1.6.3 Variation 3: Gold-Catalyzed Oxidative C--O Bond Formation 119
3.6.12.1.1.2 Nucleophilic Attack on the (Acyloxy)allene at the ß- or .-Position 121
3.6.12.1.1.2.1 Method 1: Nucleophilic Attack at the .-Position 122
3.6.12.1.1.2.2 Method 2: Nucleophilic Attack at the ß-Position 125
3.6.12.1.1.3 (Acyloxy)allenes as Nucleophiles 126
3.6.12.1.1.4 (Acyloxy)allenes as All-Carbon 1,3-Dipoles 129
3.6.13 Organometallic Complexes of Gold (Update 3) 132
3.6.13.1 Gold-Catalyzed Coupling Reactions 132
3.6.13.1.1 Oxidative Coupling with Gold(III) as a Stoichiometric Oxidant 132
3.6.13.1.1.1 Method 1: Reductive Elimination from Stoichiometric Organogold(III) Complexes 132
3.6.13.1.1.2 Method 2: Oxidative Chlorination of Nonactivated Arenes 133
3.6.13.1.1.3 Method 3: Oxidative Alkynylation of Nonactivated Arenes 134
3.6.13.1.1.4 Method 4: Oxidative Amination of Nonactivated Arenes 135
3.6.13.1.1.5 Method 5: Oxidative Homocoupling via C--H Bond Functionalization 135
3.6.13.1.1.6 Method 6: Homocoupling as a Side Reaction in Cyclizations Catalyzed by Gold(III) 137
3.6.13.1.2 Gold-Catalyzed Cross Coupling with Substrates as Oxidants 139
3.6.13.1.2.1 Method 1: Gold-Catalyzed Suzuki Reactions 139
3.6.13.1.2.2 Method 2: Gold-Catalyzed Sonogashira Reactions 140
3.6.13.1.2.3 Method 3: Gold-Catalyzed Alkynylation of Heterocycles Using Alkynyliodine(III) Reagents 142
3.6.13.1.3 Gold-Catalyzed Oxidative Homocoupling with External Oxidants 146
3.6.13.1.3.1 Method 1: Homocoupling of Nonactivated Arenes Using (Diacetoxyiodo)benzene 147
3.6.13.1.3.2 Method 2: Synthesis of Dicoumarins via Cyclization–Homocoupling Using tert-Butyl Hydroperoxide 148
3.6.13.1.3.3 Method 3: Cyclization–Homocoupling of 2-Alkynylphenols with (Diacetoxyiodo)benzene 149
3.6.13.1.3.4 Method 4: Homocoupling of Propargyl Acetates Using Selectfluor 150
3.6.13.1.3.5 Method 5: Homocoupling from Stoichiometric Organogold(I) Complexes Using Electrophilic Fluorinating Reagents 152
3.6.13.1.4 Gold-Catalyzed Oxidative Cross Coupling with External Oxidants 153
3.6.13.1.4.1 Method 1: Oxidative Alkynylation of Nonactivated Arenes Using (Diacetoxyiodo)benzene 153
3.6.13.1.4.2 Method 2: Oxidative Diamination of Alkenes Using (Diacetoxyiodo)benzene 155
3.6.13.1.4.3 Method 3: Synthesis of 1-Carboxyvinyl Ketones via Oxidative C--O Bond Formation Using Selectfluor 157
3.6.13.1.4.4 Method 4: Oxidative Arylation with Arylboronic Acids Using Selectfluor 159
3.6.13.1.4.4.1 Variation 1: Synthesis of a-Aryl Enones from Propargyl Acetates 159
3.6.13.1.4.4.2 Variation 2: Oxidative Carboheterofunctionalization of Alkenes 161
3.6.13.1.4.4.3 Variation 3: Synthesis of a-Aryl a-Fluoro Ketones via Oxidative Functionalization of Alkynes 165
3.6.13.1.4.5 Method 5: Oxidative Arylation with Arylsilanes Using Selectfluor 166
3.6.13.1.4.6 Method 6: Oxidative Aminooxygenation and Aminoamidation of Alkenes Using Selectfluor or (Diacetoxyiodo)benzene 167
3.6.13.1.4.7 Method 7: Cascade Cyclization–Intramolecular Arylation with Nonactivated Arenes Using External Oxidants 171
3.6.13.1.4.7.1 Variation 1: Cascade Cyclization–Intramolecular Arylation of Benzyl-Substituted Allenoates Using Selectfluor 171
3.6.13.1.4.7.2 Variation 2: Cascade Cyclization–Intramolecular Arylation of Alkenes 175
3.6.13.1.4.8 Method 8: Cascade Cyclization–Oxidative Alkynylation of Allenoates Using Selectfluor 178
3.6.13.1.4.9 Method 9: Isolation of a Gold(III) Fluoride Complex and Its Use in Cross Coupling 180
Volume 5: Compounds of Group 14 (Ge, Sn, Pb) 184
5.2 Product Class 2: Tin Compounds 184
5.2.27 Product Subclass 27: Benzylstannanes 184
Synthesis of Product Subclass 27 184
5.2.27.1 Method 1: Synthesis from (Trialkylstannyl)- or (Triarylstannyl)lithiums 184
5.2.27.1.1 Variation 1: From (Trialkylstannyl)- or (Triarylstannyl)lithiums and Benzyl Halides 184
5.2.27.1.2 Variation 2: From (Trialkylstannyl)lithiums or (Trialkylstannyl)sodiums and a,ß-Unsaturated Esters 185
5.2.27.2 Method 2: Synthesis from Organomagnesium Derivatives and Organotin Halides 186
5.2.27.2.1 Variation 1: From Benzyl Halides by Barbier Reactions 186
5.2.27.2.2 Variation 2: Sonication-Promoted Barbier Reactions 187
5.2.27.2.3 Variation 3: From Benzyl Halides by Grignard Reactions 188
5.2.27.3 Method 3: Synthesis from Benzyllithiums and Stannyl Halides 189
5.2.27.3.1 Variation 1: From Benzyllithiums without Directing Groups 189
5.2.27.3.2 Variation 2: From Benzyllithiums with Directing Groups 191
5.2.27.3.3 Variation 3: From Benzyllithiums Prepared by Carbolithiation 192
5.2.27.3.4 Variation 4: From Diastereomerically Enriched Benzyllithiums Containing a Rotationally Restricted Amide 193
5.2.27.3.5 Variation 5: From Diastereomerically Enriched Benzyllithiums Prepared from Enantioenriched Sulfoxides 194
5.2.27.3.6 Variation 6: From Enantiomerically Enriched Benzyllithiums Prepared by Enantioselective Deprotonation 195
5.2.27.4 Method 4: Synthesis from Benzylzincs and Stannyl Halides 197
5.2.27.4.1 Variation 1: From Benzyl Halides by Barbier Reactions 197
5.2.27.4.2 Variation 2: From Benzylzincs via Transmetalation to Benzylcuprates 198
5.2.27.5 Method 5: Synthesis from Arylzincs and (Iodomethyl)stannanes 200
5.2.27.6 Method 6: Synthesis from Stannyl Anion Equivalents and Carbonyl Derivatives 201
5.2.27.6.1 Variation 1: Addition of Stannyllithiums to Aldehydes 201
5.2.27.6.2 Variation 2: Addition of Tributyl(trimethylsilyl)stannane to Aldehydes 201
5.2.27.6.3 Variation 3: Addition of Stannyllithiums or Stannylzincs to Enantiomerically Enriched N-Sulfinylimines 202
5.2.27.7 Method 7: Palladium-Catalyzed Insertion of Benzyl Halides into Hexaalkyldistannanes 204
5.2.27.8 Method 8: Synthesis by Silicon–Tin Transmetalation 205
5.2.27.9 Method 9: Hydrostannylation of Alkenes 205
5.2.27.9.1 Variation 1: Radical Hydrostannylation of Alkenes 205
5.2.27.9.2 Variation 2: Palladium-Catalyzed Hydrostannylation of Alkenes 206
5.2.27.10 Method 10: Palladium-Catalyzed Distannylation of o-Quinodimethanes 207
5.2.27.11 Method 11: Synthesis by Sommelet–Hauser Rearrangement of Tetraalkylammonium Salts 208
Applications of Product Subclass 27 in Organic Synthesis 210
5.2.27.12 Method 12: Transmetalation 210
5.2.27.12.1 Variation 1: Transmetalation To Afford Alkali Metal Derivatives 210
5.2.27.12.2 Variation 2: Transmetalation To Afford Other Metal Derivatives 212
5.2.27.13 Method 13: Stille Couplings 212
5.2.27.13.1 Variation 1: Coupling to Aryl Bromides 212
5.2.27.13.2 Variation 2: Coupling to Vinyl Trifluoromethanesulfonates 213
5.2.27.13.3 Variation 3: Coupling to Acyl Chlorides 214
5.2.27.14 Method 14: Palladium-Free Coupling to a-Oxo Acid Chlorides 215
5.2.27.15 Method 15: Nucleophilic Addition to N-(Alkoxycarbonyl)pyridinium Salts 215
5.2.27.16 Method 16: Three-Component Coupling of Imines, Acid Chlorides, and Benzylstannanes 216
5.2.28 Product Subclass 28: Allylstannanes 220
Synthesis of Product Subclass 28 220
5.2.28.1 Method 1: Synthesis from Allylmagnesium Reagents and Stannyl Halides 220
5.2.28.1.1 Variation 1: Via Preformed Allyl Grignards 221
5.2.28.1.2 Variation 2: Via Barbier Reaction 222
5.2.28.1.3 Variation 3: Sonication-Promoted Barbier Reactions 223
5.2.28.1.4 Variation 4: Sonication-Promoted Barbier Reactions with Hexabutyldistannoxane 224
5.2.28.2 Method 2: Synthesis from Allyllithium Derivatives and Stannyl Halides 225
5.2.28.2.1 Variation 1: Via Alkene Deprotonation 225
5.2.28.2.2 Variation 2: Via Lithium–Halogen Exchange 227
5.2.28.2.3 Variation 3: From Allyl Thioethers 228
5.2.28.2.4 Variation 4: From Enantiomerically Enriched Allyllithiums Prepared by Enantioselective Deprotonation 229
5.2.28.3 Method 3: Synthesis from Allylzincs and Stannyl Halides 230
5.2.28.4 Method 4: Synthesis by Silicon–Tin Transmetalation 232
5.2.28.5 Method 5: Synthesis from Stannyl Anion Equivalents and Allylic Halides, Sulfides, and Methanesulfonates 233
5.2.28.5.1 Variation 1: Via Stannyllithiums 233
5.2.28.5.2 Variation 2: Via Stannylcopper Compounds 236
5.2.28.5.3 Variation 3: Via Stannylpalladium Species 238
5.2.28.6 Method 6: Synthesis from Allylic Acetates, Benzoates, and Phosphates 238
5.2.28.6.1 Variation 1: Palladium-Catalyzed Reaction of Diethyl(tributylstannyl)aluminum and Allylic Acetates 238
5.2.28.6.2 Variation 2: Palladium-Catalyzed Reaction of Diethyl(tributylstannyl)aluminum and Allylic Phosphates 239
5.2.28.6.3 Variation 3: Palladium-Catalyzed Reduction of Allylic Acetates 241
5.2.28.6.4 Variation 4: Copper-Catalyzed Reaction of Bis(tributylstannyl)zinc and Allylic Benzoates 241
5.2.28.6.5 Variation 5: Palladium-Catalyzed Reaction between Samarium(II) Iodide, Stannyl Halides, and Allylic Acetates 243
5.2.28.7 Method 7: Synthesis from Allylic Sulfur Derivatives 244
5.2.28.7.1 Variation 1: Via Sulfides 244
5.2.28.7.2 Variation 2: Via Allylic Sulfones 245
5.2.28.7.3 Variation 3: Via Allylic S-Substituted S-Methyl Dithiocarbonates 248
5.2.28.8 Method 8: Synthesis via Wittig Reaction 250
5.2.28.9 Method 9: Synthesis of a-Substituted Allylstannanes by Selenoxide Elimination 252
5.2.28.10 Method 10: Synthesis from Stannyl Anion Equivalents and a,ß-Unsaturated Carbonyl Derivatives 253
5.2.28.10.1 Variation 1: 1,2-Addition to a,ß-Unsaturated Aldehydes and Ketones 253
5.2.28.10.2 Variation 2: 1,4-Addition to a,ß-Unsaturated Ketones Followed by Enamine Formation 255
5.2.28.10.3 Variation 3: Via ß-Stannyl Enolate Esters Prepared by 1,4-Addition to a,ß-Unsaturated Esters 257
5.2.28.11 Method 11: Synthesis from Allenes 259
5.2.28.11.1 Variation 1: Via Stannylcupration of Allenes 259
5.2.28.11.2 Variation 2: Palladium-Catalyzed Addition of Distannanes and Silastannanes to Allenes 261
5.2.28.11.3 Variation 3: Hydrostannylation of Allenes 263
5.2.28.11.4 Variation 4: Palladium-Catalyzed Acylstannylation of Allenes 265
5.2.28.11.5 Variation 5: Palladium-Catalyzed Distannylation of In Situ Generated Allenes 266
5.2.28.12 Method 12: Synthesis from Vinylstannanes 266
5.2.28.12.1 Variation 1: From Vinylstannanes and Ethene 266
5.2.28.12.2 Variation 2: Via Lewis Acid Catalyzed Addition of Alkylcuprates to Vinylstannane Acetals 267
5.2.28.13 Method 13: Synthesis from 1,3-Dienes 269
5.2.28.13.1 Variation 1: Platinum-Catalyzed Silylstannylation of 1,3-Dienes 269
5.2.28.13.2 Variation 2: Nickel-Catalyzed Acylstannylation of 1,3-Dienes 269
5.2.28.14 Method 14: Synthesis from Allylstannanes 270
5.2.28.14.1 Variation 1: Addition of Organometallic Species to Allylstannyl Halides 270
5.2.28.14.2 Variation 2: Rearrangement of Allylstannanes 271
5.2.28.15 Method 15: Synthesis by the Hydrolysis of Borylallylic Stannanes 272
5.2.28.16 Method 16: Additional Methods 272
Applications of Product Subclass 28 in Organic Synthesis 274
5.2.28.17 Method 17: Radical Reactions 274
5.2.28.18 Method 18: Cross-Coupling Reactions 278
5.2.28.19 Method 19: Transmetalations 279
5.2.28.20 Method 20: Reactions with Aldehydes, Ketones, and Their Derivatives 281
5.2.28.21 Method 21: Catalytic Enantioselective Addition to Aldehydes 285
5.2.28.22 Method 22: Nucleophilic Addition to N-Acyliminium Ions 287
Volume 9: Fully Unsaturated Small Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom 292
9.9 Product Class 9: Furans 292
9.9.5 Furans 292
9.9.5.1 Synthesis by Ring-Closure Reactions 294
9.9.5.1.1 By Formation of One O--C and One C--C Bond 294
9.9.5.1.1.1 Fragments O--C--C and C--C 294
9.9.5.1.1.1.1 From a-Heterofunctionalized Ketones or Aldehydes 294
9.9.5.1.1.1.1.1 Method 1: From a-Halo Ketones and 1,3-Dicarbonyl Compounds (Feist-Benary Reaction) 294
9.9.5.1.1.1.1.2 Method 2: Rhodium-Catalyzed Reaction of a-Diazocarbonyl Compounds with Alkynes 295
9.9.5.1.1.1.1.3 Method 3: From a-Oxy Ketones or Aldehydes and Dicarbonyl Compounds 296
9.9.5.1.1.1.1.4 Method 4: From a-Oxyaldehydes and Enones 296
9.9.5.1.1.1.2 From 1,3-Dicarbonyl Compounds 297
9.9.5.1.1.1.2.1 Method 1: From 1,3-Dicarbonyl Compounds and Aldose Sugars 297
9.9.5.1.1.1.2.2 Method 2: From 1,3-Dicarbonyl Compounds and Propargyl Alcohols 299
9.9.5.1.1.1.2.3 Method 3: From 1,3-Dicarbonyl Compounds and But-2-ene-1,4-diones 300
9.9.5.1.1.1.2.4 Method 4: From 1,3-Dicarbonyl Compounds and 1,4-Diphenylbut-2-yne-1,4-dione 300
9.9.5.1.1.1.2.5 Method 5: From 1,3-Dicarbonyl Compounds and Bromoallenes 301
9.9.5.1.1.1.2.6 Method 6: From 1,3-Dicarbonyl Compounds and Nitroalkenes 301
9.9.5.1.1.1.2.7 Method 7: From 1,3-Dicarbonyl Compounds and Alkynoates 302
9.9.5.1.1.1.3 From Functionalized Alkenes and Alkynes with C--C--O Building Blocks 303
9.9.5.1.1.1.3.1 Method 1: From Diethyl Acetylenedicarboxylate and Propargyl Alcohols 303
9.9.5.1.1.1.3.2 Method 2: From Dimethyl Acetylenedicarboxylate, Aldehydes, and Thiazolium Salts 303
9.9.5.1.1.2 Fragments C--C--C and O--C 304
9.9.5.1.1.2.1 Method 1: Cyclization between 2,3-Bis(trimethylsilyl)buta-1,3-diene and Acyl Chlorides 304
9.9.5.1.1.2.2 Method 2: From Ketene S,S-Acetals and Aldehydes 305
9.9.5.1.1.2.3 Method 3: Reaction between Isocyanides, Dialkyl Acetylenedicarboxylates, and 1-Aryl-2-(arylamino)-2-hydroxyethanones 306
9.9.5.1.1.2.4 Method 4: Cyclization between Propargylic Dithioacetals and Aldehydes 307
9.9.5.1.1.3 Fragments O--C--C--C and C 308
9.9.5.1.1.3.1 Method 1: From Terminal Ynones and Aldehydes 308
9.9.5.1.1.3.2 Method 2: From Enones, Aldehydes, and Isocyanides 309
9.9.5.1.1.3.3 Method 3: From 1,3-Dicarbonyl Compounds and Cyclohexyl Isocyanide 310
9.9.5.1.1.3.4 Method 4: From a,ß-Unsaturated Carbonyl Compounds and Chromium Carbenes 310
9.9.5.1.1.3.5 Method 5: From Alkynyl Ketones and Diazoacetates 311
9.9.5.1.1.3.6 Method 6: Rhodium-Catalyzed Hydroformylation of Propargyl Alcohols 312
9.9.5.1.1.3.7 Method 7: From Dialkyl Acetylenedicarboxylates, Isocyanides, and Carbonyl Compounds 312
9.9.5.1.2 By Formation of Two C--C Bonds 314
9.9.5.1.2.1 Fragments C--O--C and C--C 314
9.9.5.1.2.1.1 Method 1: Condensation of Dimethyl Diglycolate with Aryl(oxo)acetates 314
9.9.5.1.2.1.2 Method 2: Reaction of Carbonyl Ylides and Alkynes 315
9.9.5.1.3 By Formation of One O--C Bond 315
9.9.5.1.3.1 Fragment O--C--C--C--C 315
9.9.5.1.3.1.1 By Cyclization of 1,4-Diheterofunctional C4 Compounds 315
9.9.5.1.3.1.1.1 Method 1: 1,4-Diazabicyclo[2.2.2]octane-Catalyzed Reaction of a-Halo Carbonyl Compounds with Dimethyl Acetylenedicarboxylate 316
9.9.5.1.3.1.1.2 Method 2: Reactions Involving N-Heterocyclic Carbenes, Activated Alkynes, and Aldehydes 316
9.9.5.1.3.1.1.3 Method 3: Cyclization of 1,4-Dicarbonyl Compounds 317
9.9.5.1.3.1.1.4 Method 4: Cyclization of .-Ketoamides 318
9.9.5.1.3.1.1.5 Method 5: Cyclization of 4-Hydroxybut-2-enals and 4-Hydroxybut-2-enones 319
9.9.5.1.3.1.1.6 Method 6: Cyclization of But-2-ene-1,4-diones 320
9.9.5.1.3.1.1.7 Method 7: Cyclization of Alk-2-yne-1,4-diols 321
9.9.5.1.3.1.1.8 Method 8: From Alkenyl Aryl Ketones and Dichloromethyl Phenyl Sulfoxide 322
9.9.5.1.3.1.1.9 Method 9: From Baylis–Hillman Adducts of Alkyl Vinyl Ketones 323
9.9.5.1.3.1.1.10 Method 10: From .,d-Epoxyacrylates 324
9.9.5.1.3.1.2 By Cyclization of Monofunctionalized C4 Compounds 325
9.9.5.1.3.1.2.1 Method 1: Cyclization of (Z)-2-En-4-yn-1-ols 325
9.9.5.1.3.1.2.2 Method 2: Cyclization of 2-En-4-yn-1-ones 326
9.9.5.1.3.1.2.3 Method 3: Cyclization of Pent-4-ynones 328
9.9.5.1.3.1.2.4 Method 4: Cyclization of But-3-yn-1-ols and 2-Alkynylcycloalk-2-enols 330
9.9.5.1.3.1.2.5 Method 5: Cyclization of But-3-yn-1-ones 331
9.9.5.1.3.1.2.6 Method 6: Cyclization of 2-(Alk-1-ynyl)alk-2-en-1-ones 332
9.9.5.1.3.1.2.7 Method 7: Cyclization of Allenols 334
9.9.5.1.3.1.2.8 Method 8: Cyclization of Allenones 336
9.9.5.1.3.1.2.9 Method 9: Cyclization of Alk-3-yne-1,2-diols 342
9.9.5.1.3.1.2.10 Method 10: Electrophilic Cyclization of Propargylic Oxirane Derivatives 344
9.9.5.1.3.1.2.11 Method 11: Cyclization of 1-Alkynyl-2,3-epoxy Alcohols 345
9.9.5.1.3.1.2.12 Method 12: Electrophilic Cyclization of 1-(Alk-1-ynyl)cyclopropyl Ketones 346
9.9.5.1.3.1.2.13 Method 13: Cyclization of Cyclopropylidene and Cyclopropenyl Ketones 347
9.9.5.1.3.1.2.14 Method 14: Wacker-Type Oxidative Cyclization of Alkenones 349
9.9.5.1.3.1.2.15 Method 15: Cyclization of 1,3-Dienyl Ethers or 1,3-Dien-1-ols 349
9.9.5.1.3.1.2.16 Method 16: Michael-Type Cyclization of 2,4-Unsaturated 1,6-Dicarbonyl Systems 351
9.9.5.1.3.1.2.17 Method 17: Methylsulfanylation of .-Disulfanyl Carbonyl Compounds 351
9.9.5.1.3.1.2.18 Method 18: Electrophilic Cyclization of 4-Sulfanylbut-2-yn-1-ols via [1,2]-Migration of the Sulfanyl Group 352
9.9.5.1.3.1.2.19 Method 19: Cycloisomerization of a-Sulfanyl Allenes 353
9.9.5.1.3.1.2.20 Method 20: Cyclization of Acetylene–Cobalt Complexes with (Vinyloxy)silanes 354
9.9.5.1.4 By Formation of One C--C Bond 354
9.9.5.1.4.1 Fragment C--O--C--C--C 354
9.9.5.1.4.1.1 Method 1: Cyclization of (2-Cyanovinyloxy)malonates 354
9.9.5.1.4.1.2 Method 2: Ring-Closing Metathesis of Homoallylic Enol Ethers 355
9.9.5.1.4.2 Fragment C--C--O--C--C 355
9.9.5.1.4.2.1 Method 1: Intramolecular Michael-Type Addition of a 3-Oxa-1,5-enyne 355
9.9.5.1.4.2.2 Method 2: Cyclization of 2'-Bromoallylic Propargyl Ethers 356
9.9.5.1.4.2.3 Method 3: Palladium-Catalyzed Cycloisomerization of Allyl Propargyl Ethers 356
9.9.5.1.4.2.4 Method 4: Reductive Cyclization of Propargyl 2,2,2-Trichloroethyl Ethers 357
9.9.5.1.4.2.5 Method 5: Radical Cyclization of Divinyl Ethers 357
9.9.5.1.4.2.6 Method 6: Ring-Closing Metathesis of Diallylic Ethers 358
9.9.5.2 Synthesis by Ring Transformation 359
9.9.5.2.1 Ring Enlargement 359
9.9.5.2.1.1 Method 1: Ring-Opening Cycloisomerization of Methylene- or Alkylidenecyclopropyl Ketones 360
9.9.5.2.2 From Five-Membered Heterocycles 361
9.9.5.2.2.1 Method 1: Ring Opening of 7-Oxabicycles 361
9.9.5.2.2.2 Method 2: Retro-Diels–Alder Reaction of 7-Oxabicyclo[2.2.1]heptadienes 361
9.9.5.2.2.3 Method 3: Intermolecular Cycloaddition of Alkynes to Oxazoles Followed by Retro-Diels–Alder Reaction 362
9.9.5.2.2.4 Method 4: Cycloaddition of 5-Aminopentynoates with Aldehydes and a-Isocyanoacetamides Followed by Retro-Diels–Alder Reaction 363
9.9.5.2.2.5 Method 5: Synthesis from (7-Oxabicyclo[2.2.1]hept-5-en-2-ylidene)-amines by Grob Fragmentation 364
9.9.5.2.3 Ring Contraction 365
9.9.5.2.3.1 Method 1: Synthesis from Furo[3,4-c]pyranones 365
9.9.5.2.3.2 Method 2: Synthesis from 3,6-Dihydro-1,2-dioxins 366
9.9.5.2.3.3 Method 3: Synthesis from Sugar Derivatives 366
9.9.5.3 Aromatization 367
9.9.5.3.1 Method 1: Synthesis by Elimination 367
9.9.5.3.2 Method 2: Oxidation of Dihydrofurans 369
9.9.5.4 Synthesis by Substituent Modification 369
9.9.5.4.1 Substitution of Hydrogen 369
9.9.5.4.1.1 Method 1: Introduction of Aminoalkyl Groups with N-Sulfinyl-4-toluene-sulfonamide and Zinc(II) Chloride 369
9.9.5.4.1.2 Method 2: Introduction of a Hydroxymethyl Group by Friedel–Crafts Reaction 370
9.9.5.4.1.3 Method 3: Introduction of Aryl, Alkynyl, Alkyl, or Hydroxymethyl Groups by Addition/Oxidative Rearrangement 371
9.9.5.4.1.4 Method 4: Introduction of Alk-1-enyl Groups by Coupling with Alkenes or Alkynes 373
9.9.5.4.1.5 Method 5: Introduction of Alkyl Groups by Reaction with Activated Alkenes 374
9.9.5.4.1.6 Method 6: Introduction of Aryl Groups by Coupling with Aryl Halides 376
9.9.5.4.1.7 Method 7: Introduction of Alkyl Groups by Lewis Acid or Metal-Catalyzed Reactions 377
9.9.5.4.1.8 Method 8: Introduction of exo-Methylene Groups by Catalytic Inter- or Intramolecular Hydroarylation of Unactivated Triple Bonds 378
9.9.5.4.1.9 Method 9: Introduction of Halogen Substituents 379
9.9.5.4.1.10 Method 10: Ammonium Cerium(IV) Nitrate Catalyzed Radical Dimerization 379
9.9.5.4.2 Substitution of Metals 379
9.9.5.4.2.1 Method 1: Replacement of Lithium by a Hydroxymethyl Group 379
9.9.5.4.2.2 Method 2: Replacement of Lithium by a Carbonyl Group 380
9.9.5.4.2.3 Method 3: Replacement of Lithium by Alkynyl Groups via Intermediate (Butyltellanyl)furans 381
9.9.5.4.2.4 Method 4: Replacement of Lithium by an Alkyl Group via Intermediate Stannanes (Stille Coupling) 382
9.9.5.4.2.5 Method 5: Replacement of Lithium by an Aryl or Alkynyl Group via Intermediate Boronates (Suzuki Coupling) 382
9.9.5.4.2.6 Method 6: Replacement of Lithium by Deuterium 384
9.9.5.4.2.7 Method 7: Replacement of Lithium or Magnesium by Carbonyl, Aryl, or Alkenyl Groups via Intermediate Furylzinc Compounds 384
9.9.5.4.2.8 Method 8: Replacement of Lithium by an Allyl Group 385
9.9.5.4.2.9 Method 9: Replacement of Lithium by a Silyl Group 385
9.9.5.4.2.10 Method 10: Replacement of Lithium by a Carbonyl Group via a Furyltitanium 386
9.9.5.4.3 Substitution of Carbon Functionalities 386
9.9.5.4.3.1 Method 1: Curtius Rearrangement of Furan-2-carboxylic Acids 387
9.9.5.4.4 Substitution of Heteroatoms 388
9.9.5.4.4.1 Method 1: Reaction of Halofurans with Heteroatom Nucleophiles 388
9.9.5.4.4.2 Method 2: Reaction of Halofurans with Carbonyl Electrophiles 388
9.9.5.4.4.3 Method 3: Reactions of Halofurans with Alkenes 389
9.9.5.4.4.4 Method 4: Nucleophilic Aromatic Substitution of Activated 2-Methoxyfurans with Grignard Reagents 389
9.9.5.4.5 Modification of a-Substituents 390
9.9.5.4.5.1 Method 1: Multicomponent Type II Anion Relay Chemistry of 2-(tert-Butyldimethylsilyl)furan-3-carbaldehyde 390
9.9.5.4.5.2 Method 2: Wittig Rearrangement of 3-Furylmethyl Ethers 390
9.9.5.4.5.3 Method 3: Ene Reaction of 2-Methylene-2,3-dihydrofurans 391
9.9.5.4.5.4 Method 4: Pummerer-Type Reaction of (Phenylsulfinyl)furans 392
9.9.5.4.5.5 Method 5: 1,5-Electrocyclization of Carbene-Derived Ylides from N-(2-Furylmethylene)anilines 393
9.10 Product Class 10: Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides 402
9.10.4 Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides 402
9.10.4.1 Thiophenes 402
9.10.4.1.1 Synthesis by Ring-Closure Reactions 402
9.10.4.1.1.1 By Formation of Two S--C Bonds and One C--C Bond 402
9.10.4.1.1.1.1 Fragment S and Two C--C Fragments 402
9.10.4.1.1.1.1.1 Method 1: Synthesis from a Diphosphorylacetylene and Sodium Hydrosulfide Hydrate 402
9.10.4.1.1.2 By Formation of Two S--C Bonds 403
9.10.4.1.1.2.1 Fragments C--C--C--C and S 403
9.10.4.1.1.2.1.1 Method 1: Reaction of a,ß-Unsaturated Nitriles with Sulfur (The Gewald Synthesis) 403
9.10.4.1.1.3 By Formation of Two C--C Bonds 404
9.10.4.1.1.3.1 Fragments C--S--C and C--C 404
9.10.4.1.1.3.1.1 Method 1: Reaction of 3-Thia-1,5-dicarbonyl Compounds or Equivalents with 1,2-Dicarbonyl Compounds (The Hinsberg Synthesis) 404
9.10.4.1.2 Synthesis by Substituent Modification 406
9.10.4.1.2.1 Substitution of Hydrogen 406
9.10.4.1.2.1.1 Method 1: Hydrogen–Deuterium Exchange 406
9.10.4.1.2.1.2 Method 2: Introduction of Formyl Groups 406
9.10.4.1.2.1.2.1 Variation 1: Formylation with Hexamethylenetetramine in Polyphosphoric Acid 406
9.10.4.1.2.1.2.2 Variation 2: Metalation of Thiophenes Followed by Formylation with N-Formylpiperidine 407
9.10.4.1.2.1.3 Method 3: Introduction of Acyl Groups 408
9.10.4.1.2.1.3.1 Variation 1: Acylation of Thiophene with Anhydrides 408
9.10.4.1.2.1.3.2 Variation 2: Acylation of Thiophene with Acyl Chlorides 409
9.10.4.1.2.1.3.3 Variation 3: Acylation of Thiophene with an Ester 410
9.10.4.1.2.1.3.4 Variation 4: Acylation of Thiophene with Carboxylic Acids 410
9.10.4.1.2.1.4 Method 4: Introduction of Chloromethyl Groups 411
9.10.4.1.2.1.5 Method 5: Introduction of Alkylamino Groups 412
9.10.4.1.2.1.6 Method 6: Introduction of Allyl, Alk-1-enyl, or Alk-1-ynyl Groups 413
9.10.4.1.2.1.7 Method 7: Introduction of Aryl Groups 414
9.10.4.1.2.1.7.1 Variation 1: One-Pot C--H Borylation/Suzuki–Miyaura Cross Coupling 414
9.10.4.1.2.1.7.2 Variation 2: Palladium-Catalyzed Direct Arylation 416
9.10.4.1.2.1.8 Method 8: Introduction of Alkyl Groups 417
9.10.4.1.2.1.8.1 Variation 1: Gold(III)-Catalyzed Intermolecular Hydroarylation 417
9.10.4.1.2.1.8.2 Variation 2: Dichlorobis(.5-cyclopentadienyl)zirconium(IV)-Catalyzed Alkylation 417
9.10.4.1.2.1.8.3 Variation 3: Friedel–Crafts Alkylation of Thiophenes 418
9.10.4.1.2.1.9 Method 9: Halogenation 419
9.10.4.1.2.1.10 Method 10: Nitration 420
9.10.4.1.2.2 Substitution of Metals 421
9.10.4.1.2.2.1 Method 1: Substitution Reactions Involving Organostannanes (The Stille Reaction) 421
9.10.4.1.2.2.2 Method 2: Substitution Reactions Involving Organozinc Derivatives (The Negishi Reaction) 422
9.10.4.1.2.2.3 Method 3: Substitution Reactions Involving Organoboron Derivatives (The Suzuki Reaction) 423
9.10.4.1.2.2.4 Method 4: Substitution Reactions Involving Organomagnesium Derivatives (The Kumada Reaction) 425
9.10.4.1.2.3 Substitution of Heteroatoms 426
9.10.4.1.2.3.1 Method 1: Substitution of Halogens by Hydrogen 426
9.10.4.1.2.3.2 Method 2: Substitution of Halogens by Alkoxy Groups 427
9.10.4.1.2.3.3 Method 3: Metal-Assisted Cross Coupling of Halothiophenes with Alkenes 427
9.10.4.1.2.3.3.1 Variation 1: Cross Coupling of Halothiophenes with Alkenes in the Presence of a Palladium/Tetraphosphine Catalyst 427
9.10.4.1.2.3.3.2 Variation 2: Cross Coupling of Halothiophenes with Alkenes in the Presence of Palladium-Containing Nanostructured Silica Functionalized with Pyridine Sites 428
9.10.4.1.2.3.3.3 Variation 3: Palladium-Catalyzed Heck Reactions of Halothiophenes with Electron-Rich Alkenes in an Ionic Liquid 429
9.10.4.1.2.3.4 Method 4: Metal-Assisted Cross Coupling of Halothiophenes with Arenes 430
9.10.4.1.2.3.4.1 Variation 1: Suzuki Cross Coupling of Halothiophenes with Arenes in the Presence of a Palladium/Tetraphosphine Catalyst 430
9.10.4.1.2.3.4.2 Variation 2: Suzuki Cross Coupling of Halothiophenes with Arenes in the Presence of a Biarylmonophosphine Ligand 431
9.10.4.1.2.3.4.3 Variation 3: Site-Selective Suzuki–Miyaura Reactions of 2,3,5-Tribromothiophene 432
9.10.4.1.2.3.4.4 Variation 4: Suzuki-Type Cross Coupling of Halothiophenes with Arenes in the Presence of Boronates 434
9.10.4.1.2.3.4.5 Variation 5: Stille Cross Coupling of Halothiophenes with Organostannanes in the Presence of a ß-Oxoiminate(phosphine)palladium Catalyst 435
9.10.4.1.2.3.5 Method 5: Metal-Assisted Cross Coupling of Halothiophenes with Alkynes 436
9.10.4.1.2.3.6 Method 6: Palladium-Catalyzed Cyanation Reactions of Halothiophenes 437
9.10.4.1.2.3.7 Method 7: Copper-Catalyzed Amination of Halothiophenes 439
9.10.4.1.2.3.8 Method 8: Substitution of Diaryliodonium Bromides 440
9.10.4.1.2.4 Modification of a-Substituents 440
9.10.4.1.2.4.1 Method 1: Mitsunobu Reaction of Thiophenones 440
9.10.4.1.2.4.2 Method 2: Decarboxylation 442
9.10.4.2 Oligothiophenes 443
9.10.4.2.1 Synthesis by Ring-Closure Reactions 443
9.10.4.2.1.1 By Formation of Two S--C Bonds 443
9.10.4.2.1.1.1 Fragments C--C--C--C and S 443
9.10.4.2.1.1.1.1 Method 1: Reaction of Buta-1,3-diynes with Sulfides as Sulfuration Reagents 443
9.10.4.2.1.1.1.2 Method 2: Reaction of 1,4-Diketones with Sulfur Reagents and Cyclization 444
9.10.4.2.2 Synthesis by Ring Transformation 445
9.10.4.2.2.1 Ring Contraction 445
9.10.4.2.2.1.1 Method 1: Synthesis from 1,2-Dithiins by Oxidative Coupling/Dechalcogenation with Copper Nanopowder 445
9.10.4.2.3 Synthesis by Substituent Modification 447
9.10.4.2.3.1 Substitution of Hydrogen 447
9.10.4.2.3.1.1 Method 1: Oxidative Coupling Reactions 447
9.10.4.2.3.1.2 Method 2: Direct Arylation Methods Involving Metal Catalysis 451
9.10.4.2.3.1.2.1 Variation 1: Aryl--Aryl Bond Formation via Coupling of Two C--H Bonds 451
9.10.4.2.3.2 Substitution of Metals 451
9.10.4.2.3.2.1 Method 1: Substitution Reactions Involving Organostannanes (The Stille Reaction) 451
9.10.4.2.3.2.1.1 Variation 1: Palladium-Catalyzed Stille Cross-Coupling Reactions 451
9.10.4.2.3.2.1.2 Variation 2: Palladium-Catalyzed, Copper(II) Oxide Modified Stille Cross-Coupling Reactions 454
9.10.4.2.3.2.1.3 Variation 3: Palladium-Catalyzed, Solid-Phase Stille Cross-Coupling Reactions 455
9.10.4.2.3.2.2 Method 2: Substitution Reactions Involving Organozinc Derivatives 456
9.10.4.2.3.2.3 Method 3: Substitution Reactions Involving Organoboron Derivatives (The Suzuki Reaction) 458
9.10.4.2.3.2.3.1 Variation 1: Tetrakis(triphenylphosphine)palladium(0)-Assisted Suzuki Cross Coupling under Basic Conditions 458
9.10.4.2.3.2.3.2 Variation 2: Microwave-Assisted Palladium Catalysis Using Silica- and Chitosan-Supported Palladium Complexes 460
9.10.4.2.3.2.3.3 Variation 3: A “Base-Free” Tetrakis(triphenylphosphine)palladium(0)-Assisted Suzuki Cross-Coupling Protocol Involving a Triethylborate Salt 461
9.10.4.2.3.2.4 Method 4: Substitution Reactions Involving Organomagnesium Derivatives 463
9.10.4.2.3.3 Substitution of Heteroatoms 464
9.10.4.2.3.3.1 Method 1: Introduction of Aryl Groups 464
9.10.4.2.3.3.2 Method 2: Palladium-Assisted Coupling Reactions 465
9.10.4.3 Thiophene 1,1-Dioxides 466
9.10.4.3.1 Synthesis by Ring Transformation 466
9.10.4.3.1.1 Oxidation 466
9.10.4.3.1.1.1 Method 1: Oxidation of Thiophenes 466
9.10.4.3.2 Aromatization 468
9.10.4.3.2.1 Method 1: Synthesis from 3-Hydroxy-2,3-dihydrothieno[3,2-b]thiophene-1,1-Dioxides by Dehydration 468
Volume 20: Three Carbon--Heteroatom Bonds: Acid Halides Carboxylic Acids and Acid Salts
20.5 Product Class 5: Carboxylic Acid Esters 476
20.5.1.7.15 Synthesis with Retention of the Functional Group 476
20.5.1.7.15.1 Conjugate Addition to a,ß-Unsaturated Esters 476
20.5.1.7.15.1.1 Method 1: Conjugate Addition of Organometallic Reagents 476
20.5.1.7.15.1.1.1 Variation 1: Conjugate Addition of Organocopper Reagents 476
20.5.1.7.15.1.1.2 Variation 2: Conjugate Addition of Grignard Reagents 478
20.5.1.7.15.1.1.3 Variation 3: Conjugate Addition of Organolithium Reagents 481
20.5.1.7.15.1.2 Method 2: Conjugate Addition of Other Carbon Nucleophiles 483
20.5.1.7.15.1.2.1 Variation 1: Conjugate Addition of Enolates 483
20.5.1.7.15.1.2.2 Variation 2: Conjugate Addition of Malonates and Derivatives 484
20.5.1.7.15.1.2.3 Variation 3: Conjugate Addition of Terminal Alkynes 485
20.5.1.7.15.1.3 Method 3: Conjugate Addition of Organosilane Reagents 485
20.5.1.7.15.1.4 Method 4: Conjugate Addition of Organoborane Reagents 486
20.5.1.7.15.1.5 Method 5: Conjugate Addition of Boronate Derivatives 490
20.5.1.7.15.1.6 Method 6: Conjugate Addition of Amines 491
20.5.1.7.15.1.7 Method 7: Conjugate Addition of O- and S-Nucleophiles 494
Volume 39: Sulfur, Selenium, and Tellurium 500
39.1 Product Class 1: Alkanesulfonic Acids and Acyclic Derivatives 500
39.1.15 Alkanesulfonic Acids and Acyclic Derivatives 500
39.1.15.1 Applications of Alkanesulfonyl Halides in Organic Synthesis 500
39.1.15.1.1 Method 1: Protection of Alcohols 500
39.1.15.1.2 Method 2: Protection of Amines 501
39.1.15.1.3 Method 3: Synthesis of Alkanethiols 501
39.1.15.1.4 Method 4: Synthesis of Dialkyl Disulfides 501
39.1.15.1.5 Method 5: Synthesis of Sulfinic Acids and Salts 502
39.1.15.1.6 Method 6: Synthesis of Alkanesulfinate Esters 502
39.1.15.1.7 Method 7: Synthesis of Alkanethiosulfonic Acids and Alkanethiosulfinate Esters 502
39.1.15.1.8 Method 8: Synthesis of Sulfones 502
39.1.15.1.8.1 Variation 1: Reactions of Alkanesulfonyl Chlorides with Organometallic Compounds 502
39.1.15.1.8.2 Variation 2: Synthesis of Alkyl Aryl Sulfones 504
39.1.15.1.8.3 Variation 3: Addition of Sulfonyl Halides to Multiple Bonds 505
39.1.15.1.8.4 Variation 4: Synthesis of ß-Substituted Sulfones 506
39.1.15.1.9 Method 9: Synthesis of Sulfur Heterocycles 511
39.1.15.1.10 Method 10: Formation of C--C Bonds Using Alkanesulfonyl Halides 517
39.1.15.1.11 Method 11: Formation of C==C Bonds Using Alkanesulfonyl Halides 521
39.1.15.1.12 Method 12: Transformation of Alcohols into Alkyl Chlorides and Chlorination Reactions 524
39.1.15.1.13 Method 13: Cyclization Reactions via Acyliminium Ion Formation 526
39.1.15.1.14 Method 14: Pyrrolidine Ring Formation 527
39.1.15.1.15 Method 15: Epoxide Ring Formation 527
39.1.15.1.16 Method 16: Lactone Inversion 528
39.1.15.1.17 Method 17: Formation of Aldehydes via Rearrangement of Thioacetals 528
Author Index 532
Abbreviations 556
List of All Volumes 562
3.6.11 Organometallic Complexes of Gold (Update 1, 2011)
V. López-Carrillo and A. M. Echavarren
3.6.11.1 Gold-Catalyzed Cycloisomerizations of Enynes
Gold(I) salts and complexes are the most alkynophilic amongst the electrophilic metals that catalyze cyclization of 1,n-enynes.[1–13] Gold(I) complexes are highly selective Lewis acids with a high affinity for π-bonds linked to relativistic effects, which reach a maximum with gold.[6,14–16] In the reactions of 1,6-enynes 1, the alkyne group is selectively activated by a cationic gold species {[AuL]+} to form an alkyne–gold(I) complex, which reacts intramolecularly with the alkene by formal 5-exo-dig or 6-endo-dig cyclization to form intermediates 2 and 3, respectively (▶ Scheme 1).[1] A number of alkyne–gold complexes have been characterized[17–21] and studied in solution.[22–25]
▶ Scheme 1 General Reaction Pathways in the Gold(I)-Catalyzed Cyclization of 1,6-Enynes
Although the vast majority of cyclizations of 1,n-enynes catalyzed by gold(I) can be explained by the selective activation of the alkyne function by gold, complexes of gold(I) with the alkene function of the enyne are actually formed in solution in equilibrium with the alkyne–gold complexes.[26] Indeed, well-characterized complexes of gold(I) with alkenes are known[27–42] and their structures have been studied in solution.[39,40,43,44] The solid-state structure of a cationic allene–gold(I) complex has also been determined.[45]
Formation of C—C bonds can be catalyzed by gold(I) or gold(III) salts or complexes. However, gold(III) may be reduced to gold(I) by easily oxidizable substrates.[46] The most widely used catalysts are cationic complexes [Au(S)(L)]X (L = ligand; S = solvent or substrate molecule) generated in situ by chloride abstraction from complexes [AuCl(L)]. Thus, the precatalyst chloro(triphenylphosphine)gold(I) (or other similar phosphine complex) reacts with 1 equivalent of a silver salt with a noncoordinating anion to generate in situ the cationic catalyst {[Au(PPh3)(S)]X}.[47,48] Similar cationic complexes can be obtained in situ by cleavage of the Au—Me bond in methyl(triphenylphosphine)gold(I) with a protic acid.[47,49–51] More conveniently, a cationic complex {[Au(NCMe)(PPh3)]SbF6} has been prepared as a stable crystalline solid, which allows gold(I)-catalyzed reactions to be performed in the absence of silver salts.[47] A gold–oxo complex {[(Ph3PAu)3O]BF4}[52,53] has also been used as a catalyst in reactions of enynes.[54]
Gold(I) complexes 4–7 bearing bulky, biphenyl-based phosphines, which have been shown to be excellent ligands for palladium-catalyzed reactions,[55,56] lead to active catalysts upon activation with silver(I) salts (▶ Scheme 2).[57] More convenient as catalysts are cationic complexes 8–11, which are stable crystalline solids that can be handled under ordinary conditions,[58,59] yet are very reactive as catalysts in a variety of transformations.[60–63] Related complexes 12 and 13 with a weakly coordinated bis(trifluoromethylsulfonyl)amide ligand have also been prepared.[64] Gold complexes with highly electrondonating N-heterocyclic carbene ligands[65–67] such as 14–17 are also good precatalysts.[57,68–72] Cationic species 18 and 19,[73] and related complexes,[74,75] as was well as neutral species 20 and 21[76,77] bearing the 1,3-dimesitylimidazol-2-ylidene (IMes) and 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) N-heterocyclic carbene ligands are active catalysts in many applications. A hydroxygold(I) complex [Au(OH)(IPr)] can also be used as a precatalyst that can be activated with Brønsted acids.[78,79] Open carbenes[80–84] and other related carbenes[20,85–88] also give rise to selective catalysts of moderate electro-philicity. Gold(I) complexes with less donating phosphite or phosphoramidite ligands are the most electrophilic catalysts.[89,90] In particular, readily available complex 22/silver(I) hexafluoroantimonate[91] and its cationic relative 23, bearing tris(2,4-di-tert-butylphenyl)phosphite, are amongst the most reactive gold(I) complexes for the activation of alkynes.[68]
▶ Scheme 2 Selected Gold(I) Complexes Used as Catalysts or Precatalysts
3.6.11.1.1 Method 1: Cycloisomerization of 1,6-Enynes
3.6.11.1.1.1 Variation 1: Formation of 1,3-Dienes
In contrast to palladium(II), platinum(II),[92–95] and ruthenium(II),[94] gold(I) does not undergo oxidative addition under mild conditions.[6,47,96–98] In the absence of nucleophiles, 1,6-enynes usually undergo various types of skeletal rearrangement reactions by fully intra-molecular processes using a variety of electrophilic metal catalysts.[2–4] The major pathways lead to 1,3-dienes 24 and/or 25, reactions known as single-cleavage and double-cleavage rearrangements (▶ Scheme 3).[92,93,99–120] These rearrangement reactions proceed under milder conditions using gold(I) catalysts.[47,48,96] For gold(I), the rearrangement is proposed to proceed via intermediates 2 (see ▶ Scheme 1, Section 3.6.11.1),[97,121] by a mechanism that is consistent with previous work.[99,100,105,114,122–124] Products 26 of a different type of skeletal rearrangement were originally obtained using gold(I) catalysts,[120,125] although this type of compound has since also been obtained using indium(III) chloride[109,110] or iron(III)[96] or ruthenium(II) catalysts.[126] Similar products have also been observed in the reaction of Z-4,6-dien-1-yl-3-ol derivatives with gold or platinum catalysts.[127,128]
▶ Scheme 3 Gold(I)-Catalyzed Skeletal Rearrangement of 1,6-Enynes
None of the key intermediates involved in the skeletal rearrangement has been spectroscopically characterized,[129] although a gold carbene with an N-heterocyclic carbene ligand has been formed in the gas phase and its reactivity with alkenes has been studied.[130–133] Therefore, the structures of these species are based on density functional theory (DFT) calculations. Some of these intermediates are depicted for convenience as gold carbenes, since backbonding in gold(I) has been shown to be not insignificant.[5,6,134,135] However, according to theoretical calculations, these are highly delocalized structures.[97,121,136,137] In the case of cyclopropyl-containing gold carbenes 2 (see ▶ Scheme 1, Section 3.6.11.1), these can also be viewed as delocalized cyclopropylmethyl/cyclobutyl/homoallyl carbocations[138] stabilized by gold.[97,121]
Single-cleavage rearrangement reactions of enynes 27 are stereospecific transformations that proceed under mild conditions to give cyclized products 28 (▶ Scheme 4).[96] Using cationic catalysts 8 or 9 containing bulky phosphine ligands, the rearrangements take place smoothly at temperatures as low as –40 to –60 °C.[121] Similar transformations have been carried out with other gold(I) catalysts.[64,77,139] However, as an exception, enynes such as 29 and 31 with strongly electron-donating groups at the alkene terminus lead to dienes 30 and 32, respectively, with a Z configuration, regardless of the configuration of the starting enynes (▶ Scheme 5).[140]
▶ Scheme 4...
Erscheint lt. Verlag | 14.5.2014 |
---|---|
Verlagsort | Stuttgart |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik | |
Schlagworte | acyclic derivatives • alkanesulfonic • allylstannanes • ALLYLSTANN ANES • benzylstannanes • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • Compound • compound functional group • compound organic synthesis • Functional Group • furans • Gold • Mechanism • Method • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Organometallic • Peptide synthesis • Practical • practical organic chemistry • Reaction • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Synthese • synthesis • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • thiophene |
ISBN-10 | 3-13-178741-4 / 3131787414 |
ISBN-13 | 978-3-13-178741-5 / 9783131787415 |
Haben Sie eine Frage zum Produkt? |
Größe: 21,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich