Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 40a (eBook)

Amines and Ammonium Salts
eBook Download: PDF | EPUB
2014 | 1. Auflage
844 Seiten
Thieme (Verlag)
978-3-13-172171-6 (ISBN)

Lese- und Medienproben

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations  Vol. 40a -
Systemvoraussetzungen
Systemvoraussetzungen
2.589,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'> <HTML><HEAD> <META content='text/html; charset=unicode' http-equiv=Content-Type> <META name=GENERATOR content='MSHTML 8.00.7600.16588'></HEAD> <BODY> <P><font color='#b50039'>Turning Information Into Knowledge</font></P> <P><EM>Science of Synthesis: Houben-Weyl Methods of Molecular Transformations</EM> is the entirely new edition of the acclaimed reference series Houben-Weyl, the standard synthetic chemistry resource since 1909. This new edition is published in English and will comprise 48 volumes published between the years 2000 and 2008.</P> <P><EM>Science of Synthesis</EM> is a quality reference work developed by a highly esteemed editorial board to provide a comprehensive and critical selection of reliable organic and organometallic synthetic methods. This unique resource is designed to be the first point of reference when searching for a synthesis strategy.</P> <UL><LI>Contains the expertise of presently 400 leading chemists worldwide <LI>Critically evaluates the preparative applicability and significance of the synthetic methods <LI>Discusses relevant background information and provides detailed experimental procedures</LI></UL> <P>For full information on the <EM>Science of Synthesis</EM> series, visit the <A href='http://www.science-of-synthesis.com/'>Science of Synthesis Homepage</A></P></BODY></HTML>

Volume 40a: Amines and Ammonium Salts 1
Title page 3
Imprint 5
Preface 6
Volume Editors Preface 8
Overview 10
Table of Contents 12
Introduction 30
40.1 Product Class 1: Amino Compounds 36
40.1.1 Product Subclass 1: Alkyl- and Cycloalkylamines 36
40.1.1.1 Synthesis by Reduction 52
40.1.1.1.1 Reduction of Carbonic and Carboxylic Acid Derivatives 52
40.1.1.1.1.1 Method 1: Reduction of Carbon Monoxide Gas 52
40.1.1.1.1.2 Method 2: Reduction of Carbamates 52
40.1.1.1.1.2.1 Variation 1: Reduction with Aluminum Hydrides 53
40.1.1.1.1.2.2 Variation 2: Catalytic Hydrogenation 54
40.1.1.1.1.2.3 Variations 3: Miscellaneous Reductions 56
40.1.1.1.1.3 Method 3: Reduction of Isocyanates or Isothiocyanates 57
40.1.1.1.1.4 Method 4: Reduction of Nitriles 58
40.1.1.1.1.4.1 Variation 1: Catalytic Hydrogenation 58
40.1.1.1.1.4.2 Variation 2: Reduction with Aluminum Hydrides 63
40.1.1.1.1.4.3 Variation 3: Reduction with Boranes 67
40.1.1.1.1.4.4 Variation 4: Reduction with Borohydrides 70
40.1.1.1.1.4.5 Variation 5: The Kulinkovich--de Meijere Reaction 73
40.1.1.1.1.5 Method 5: Reduction of Amides or Thioamides 74
40.1.1.1.1.5.1 Variation 1: Reduction with Aluminum Hydrides 74
40.1.1.1.1.5.2 Variation 2: Reduction with Borane Derivatives 77
40.1.1.1.1.5.3 Variation 3: Reduction with Hydrosilanes 78
40.1.1.1.1.5.4 Variation 4: Reduction of Thioamides 79
40.1.1.1.1.5.5 Variation 5: The Kulinkovich--de Meijere Reaction 80
40.1.1.1.1.6 Method 6: Reduction of Imides 83
40.1.1.1.1.7 Method 7: Reduction of Imidates and Imidoyl Chlorides 84
40.1.1.1.2 Reductive Amination of Carbonyl Compounds 94
40.1.1.1.2.1 Alkylamines from Carbonyl Compounds by Direct Reductive Amination 94
40.1.1.1.2.1.1 Method 1: Direct Reductive Amination by Catalytic Hydrogenation 95
40.1.1.1.2.1.1.1 Variation 1: Hydrogenation Using Heterogeneous Metal Catalysts 95
40.1.1.1.2.1.1.2 Variation 2: Hydrogenation Using Homogeneous Metal Complex Catalysts 96
40.1.1.1.2.1.1.3 Variation 3: Palladium-Catalyzed Transfer Hydrogenation 97
40.1.1.1.2.1.2 Method 2: Direct Reductive Amination Using Silanes as a Hydrogen Source 98
40.1.1.1.2.1.2.1 Variation 1: Using Polymethylhydrosiloxane 98
40.1.1.1.2.1.2.2 Variation 2: Using Aminohydrosilanes 98
40.1.1.1.2.1.2.3 Variation 3: Using Triethylsilane 99
40.1.1.1.2.1.3 Method 3: Direct Reductive Amination with Borohydride or Borane Reducing Agents 99
40.1.1.1.2.1.3.1 Variation 1: Using Sodium Cyanoborohydride 99
40.1.1.1.2.1.3.2 Variation 2: Using Sodium Borohydride 101
40.1.1.1.2.1.3.3 Variation 3: Using Zirconium(II) or Copper(I) Borohydrides 102
40.1.1.1.2.1.3.4 Variation 4: Using Sodium Triacyloxyborohydrides 103
40.1.1.1.2.1.3.5 Variation 5: Using Aminoboranes 103
40.1.1.1.2.2 Primary Alkylamines from Oximes and O-Alkyloximes 104
40.1.1.1.2.2.1 Primary Alkylamines from Oximes 105
40.1.1.1.2.2.1.1 Method 1: Catalytic Hydrogenation 105
40.1.1.1.2.2.1.2 Method 2: Catalytic Transfer Hydrogenation 106
40.1.1.1.2.2.1.3 Method 3: Reduction with Metallic Zinc 106
40.1.1.1.2.2.1.3.1 Variation 1: Using Zinc in the Presence of Ammonia 106
40.1.1.1.2.2.1.3.2 Variation 2: Using Zinc in the Presence of a Carboxylic Acid 107
40.1.1.1.2.2.1.4 Method 4: Reductions with Borane or Borohydrides 108
40.1.1.1.2.2.1.4.1 Variation 1: Reduction with Borane 108
40.1.1.1.2.2.1.4.2 Variation 2: Reduction with Borohydrides 108
40.1.1.1.2.2.1.5 Method 5: Reductions with Aluminum Trihydride or Hydroaluminates 109
40.1.1.1.2.2.2 Primary Alkylamines from O-Alkyloximes 110
40.1.1.1.2.3 Secondary Alkylamines from N-Alkylidenealkylamines by Reduction 111
40.1.1.1.2.3.1 Method 1: Stereorandom Reduction of N-Alkylidenealkylamines to Secondary Alkylamines 111
40.1.1.1.2.3.1.1 Variation 1: Via Transfer Hydrogenation 111
40.1.1.1.2.3.1.2 Variation 2: By Reduction with Hydrides 112
40.1.1.1.2.3.2 Method 2: Enantioselective Reduction of N-Alkylidenealkylamines to Secondary Alkylamines 113
40.1.1.1.2.4 Tertiary Alkylamines from Enamines by Reduction 114
40.1.1.1.2.4.1 Method 1: Amines from Enamines by Catalytic Hydrogenation 114
40.1.1.1.2.4.2 Method 2: Amines from Enamines by Enantioselective (Asymmetric) Catalytic Hydrogenation 115
40.1.1.1.2.4.3 Method 3: Amines from Enamines Using Other Reducing Agents 116
40.1.1.1.3 Reaction of Acetals with Organometallic Reagents 120
40.1.1.1.3.1 Method 1: Additions to N,O-Acetals 120
40.1.1.1.3.1.1 Variation 1: Addition to N,O-Acetals Incorporating a Tertiary Amine Function 120
40.1.1.1.3.1.2 Variation 2: Addition to N,O-Acetals Incorporating a Secondary Amine Function 124
40.1.1.1.3.1.3 Variation 3: Development of Asymmetric Additions to N,O-Acetals 127
40.1.1.1.3.2 Method 2: Additions to N,N-Acetals 128
40.1.1.1.3.3 Method 3: Reductive Arylation of N,O-Acetals: The Tscherniac--Einhorn Reaction 129
40.1.1.1.3.3.1 Variation 1: Asymmetric Equivalents of the Tscherniac--Einhorn Reaction 134
40.1.1.1.4 Hydroaminomethylation of Alkenes 140
40.1.1.1.4.1 Method 1: Hydroaminomethylation 140
40.1.1.1.5 Reduction of Nitrogen-Based Functional Groups 148
40.1.1.1.5.1 Reduction of Nitroalkanes 148
40.1.1.1.5.1.1 Method 1: Cathodic Reduction 149
40.1.1.1.5.1.2 Method 2: Catalytic Hydrogenation 149
40.1.1.1.5.1.3 Method 3: Transfer Hydrogenation 151
40.1.1.1.5.1.4 Method 4: Reduction Using Borohydrides and an Additional Catalyst 153
40.1.1.1.5.1.4.1 Variation 1: Using Sodium Borohydride 153
40.1.1.1.5.1.4.2 Variation 2: Using Borohydride Exchange Resin 154
40.1.1.1.5.1.4.3 Variation 3: Using Zinc(II) Borohydride--Pyridine 154
40.1.1.1.5.1.5 Method 5: Reduction Using Lithium Aluminum Hydride 154
40.1.1.1.5.1.6 Method 6: Reduction Using Aluminum Amalgam Promoted by Ultrasound 156
40.1.1.1.5.1.7 Method 7: Reduction Using Tin--Hydrochloric Acid 157
40.1.1.1.5.1.8 Method 8: Reduction Using Samarium(II) Iodide 157
40.1.1.1.5.2 Reduction of Mesoionic 2-Alkyl-1,2,3-triazines 159
40.1.1.1.5.3 Reduction of Nitrosoalkanes 160
40.1.1.1.5.4 Reduction of Alkyl Azides 160
40.1.1.1.5.4.1 Method 1: Catalytic Hydrogenation 160
40.1.1.1.5.4.2 Method 2: Transfer Hydrogenation 162
40.1.1.1.5.4.3 Method 3: Reduction Using Boranes or Boronates 164
40.1.1.1.5.4.3.1 Variation 1: Using Dichloroborane--Dimethyl Sulfide 164
40.1.1.1.5.4.3.2 Variation 2: Using Lithium Aminoborohydrides 165
40.1.1.1.5.4.3.3 Variation 3: Using Sodium Borohydride 166
40.1.1.1.5.4.3.4 Variation 4: Using Borohydride Exchange Resin--Nickel(II) Acetate 168
40.1.1.1.5.4.3.5 Variation 5: Using Zinc(II) Borohydride 168
40.1.1.1.5.4.4 Method 4: Reduction Using Lithium Aluminum Hydride 169
40.1.1.1.5.4.5 Method 5: Reduction Using Tributyltin Hydride 170
40.1.1.1.5.4.6 Method 6: Reduction Using Metals 170
40.1.1.1.5.4.7 Method 7: Reduction Using Triphenylphosphine 172
40.1.1.1.5.4.8 Method 8: Reduction Using Hydrogen Sulfide 173
40.1.1.1.5.4.9 Method 9: Reduction Using Propane-1,3-dithiol 173
40.1.1.1.5.4.10 Method 10: Reduction Using Low-Valent Metal Ion Salts 174
40.1.1.1.5.4.11 Methods 11: Miscellaneous Methods 174
40.1.1.1.5.5 Reduction of 1,2-Diazenes 174
40.1.1.1.5.6 Reduction of Hydroxylamines 175
40.1.1.1.5.7 Reduction of Amine Oxides 176
40.1.1.1.5.8 Reduction of N-Nitro and N-Nitroso Compounds 178
40.1.1.1.5.9 Reduction of Alkylhydrazines 178
40.1.1.1.5.10 Reduction of Sulfonamides 182
40.1.1.2 Synthesis by Substitution 232
40.1.1.2.1 Synthesis by Substitution of Hydrogen or Metals 232
40.1.1.2.1.1 Method 1: a-Amination of Carbonyl Compounds and Analogues 186
40.1.1.2.1.1.1 Variation 1: Amination with Azodicarboxylates 186
40.1.1.2.1.1.2 Variation 2: Amination with R2NL Compounds (L = Leaving Group) 196
40.1.1.2.1.1.3 Variation 3: Amination with Azides Followed by Reduction 199
40.1.1.2.1.1.4 Variation 4: Amination with Oxaziridines 202
40.1.1.2.1.1.5 Variation 5: Amination with 1-Chloro-1-nitroso Reagents 204
40.1.1.2.1.1.6 Variation 6: Amination with Lithium N-(tert-Butoxycarbonyl)-O-tosylhydroxyamide 205
40.1.1.2.1.1.7 Variation 7: Amination with Nitridomanganese(V) Complexes 205
40.1.1.2.1.1.8 Variations 8: Other Variations 206
40.1.1.2.1.2 Method 2: Substitution of Hydrogen Other Than the a-Hydrogen of Carbonyl Compounds 206
40.1.1.2.1.2.1 Variation 1: Amination with Azidotrimethylsilane Followed by Reduction 207
40.1.1.2.1.2.2 Variation 2: Amination of Unactivated C--H Groups with Haloamines 209
40.1.1.2.1.2.3 Variation 3: Rhodium(II)-, Ruthenium(II)-, or Manganese(III)-Catalyzed Amination 210
40.1.1.2.1.2.4 Variations 4: Miscellaneous Variations 213
40.1.1.2.1.3 Method 3: Substitution of Metal Atoms 214
40.1.1.2.1.3.1 Variation 1: Substitution of Boron 215
40.1.1.2.1.3.2 Variation 2: Substitution of Zinc 216
40.1.1.2.1.3.3 Variation 3: Substitution of Copper 219
40.1.1.2.1.3.4 Variation 4: Substitution of Magnesium 220
40.1.1.2.1.3.5 Variation 5: Substitution of Lithium 224
40.1.1.2.1.3.6 Variation 6: Substitution of Other Metal Atoms 226
40.1.1.2.2 Substitution of Carbon Functionalities via Solvolysis 232
40.1.1.2.2.1 Method 1: Substitution of Carbamates 232
40.1.1.2.2.1.1 Variation 1: Cleavage by Nucleophilic Substitution 232
40.1.1.2.2.1.2 Variation 2: Cleavage by Protic or Lewis Acids 235
40.1.1.2.2.1.3 Variation 3: Cleavage by Base-Induced ß-Elimination 239
40.1.1.2.2.1.4 Variation 4: Cleavage by Remote Attack of Bases or Nucleophiles at the Carbamate Group 242
40.1.1.2.2.2 Method 2: Substitution of Carboxylic Acid N-Derivatives 248
40.1.1.2.2.2.1 Variation 1: Acyclic Carboxylic Acid N-Derivatives 248
40.1.1.2.2.2.2 Variation 2: Cyclic Carboxylic Acid N-Derivatives (Cyclic Imide Derivatives) 255
40.1.1.2.2.2.3 Variation 3: Amidines 258
40.1.1.2.3 Substitution of Sulfur or Phosphorus Functionalities 262
40.1.1.2.3.1 Method 1: Cleavage of Sulfonic, Sulfinic, and Sulfenic Acid N-Derivatives 262
40.1.1.2.3.2 Method 2: Cleavage of Phosphoric and Phosphinic Acid Amides 266
40.1.1.3 Synthesis by Addition Reactions 270
40.1.1.3.1 Hydroamination 270
40.1.1.3.1.1 Method 1: Hydroamination of Alkenes 270
40.1.1.3.1.1.1 Variation 1: Catalysis by Acids 270
40.1.1.3.1.1.2 Variation 2: Catalysis by Bases 272
40.1.1.3.1.1.3 Variation 3: Catalysis by Calcium Complexes 274
40.1.1.3.1.1.4 Variation 4: Catalysis by Rare Earth Metal Complexes 275
40.1.1.3.1.1.5 Variation 5: Catalysis by Actinide Complexes 285
40.1.1.3.1.1.6 Variation 6: Catalysis by Group 4 Metal Complexes 286
40.1.1.3.1.1.7 Variation 7: Catalysis by Group 8 Metal Complexes 288
40.1.1.3.1.1.8 Variation 8: Catalysis by Group 9 Metal Complexes 289
40.1.1.3.1.1.9 Variation 9: Catalysis by Group 10 Metal Complexes 290
40.1.1.3.1.1.10 Variation 10: Catalysis by Group 11 Metal Complexes 292
40.1.1.3.1.1.11 Variation 11: Catalysis by Group 12 Metal Complexes 293
40.1.1.3.1.2 Method 2: Hydroamination of Vinylarenes 293
40.1.1.3.1.2.1 Variation 1: Catalysis by Acids 293
40.1.1.3.1.2.2 Variation 2: Catalysis by Bases 294
40.1.1.3.1.2.3 Variation 3: Catalysis by Rare Earth Metal Complexes 295
40.1.1.3.1.2.4 Variation 4: Catalysis by Hafnium Complexes 297
40.1.1.3.1.2.5 Variation 5: Catalysis by Ruthenium Complexes 298
40.1.1.3.1.2.6 Variation 6: Catalysis by Rhodium Complexes 299
40.1.1.3.1.2.7 Variation 7: Catalysis by Palladium or Platinum Complexes 301
40.1.1.3.1.2.8 Variation 8: Catalysis by Copper Complexes 302
40.1.1.3.1.2.9 Variation 9: Catalysis by Bismuth Complexes 303
40.1.1.3.1.2.10 Variation 10: Catalysis by N-Bromosuccinimide 303
40.1.1.3.1.2.11 Variation 11: Photoamination of Vinylarenes 304
40.1.1.3.1.3 Method 3: Hydroamination of 1,3-Dienes 304
40.1.1.3.1.3.1 Variation 1: Catalysis by Acids 305
40.1.1.3.1.3.2 Variation 2: Catalysis by Bases 305
40.1.1.3.1.3.3 Variation 3: Catalysis by Rare Earth Metal Complexes 306
40.1.1.3.1.3.4 Variation 4: Catalysis by Group 10 Metal Complexes 307
40.1.1.3.1.3.5 Variation 5: Catalysis by Gold Complexes 308
40.1.1.3.1.3.6 Variation 6: Catalysis by Bismuth Complexes 308
40.1.1.3.1.3.7 Variation 7: Photoamination of 1,3-Dienes 309
40.1.1.3.1.4 Method 4: Hydroamination of Cyclohepta-1,3,5-triene 309
40.1.1.3.1.5 Method 5: Hydroamination of Allenes 310
40.1.1.3.1.5.1 Variation 1: Catalysis by Rare Earth Metal Complexes 310
40.1.1.3.1.5.2 Variation 2: Catalysis by Titanium or Zirconium Complexes 311
40.1.1.3.1.5.3 Variation 3: Catalysis by Ruthenium Complexes 312
40.1.1.3.1.5.4 Variation 4: Catalysis by Palladium Complexes 313
40.1.1.3.1.5.5 Variation 5: Catalysis by Gold or Silver Complexes 315
40.1.1.3.1.6 Method 6: Hydroamination of Allenes and Subsequent Reduction 316
40.1.1.3.1.7 Method 7: Hydroamination of Alkynes 317
40.1.1.3.1.8 Method 8: Hydroamination of Alkynes and Subsequent Reduction 318
40.1.1.3.1.8.1 Variation 1: Catalysis by Rare Earth Metal Complexes 318
40.1.1.3.1.8.2 Variation 2: Catalysis by Group 4 Metal Complexes 319
40.1.1.3.1.8.3 Variation 3: Catalysis by Iridium Complexes 321
40.1.1.3.1.8.4 Variation 4: Catalysis by Silver Complexes 322
40.1.1.3.1.9 Method 9: Hydroamination of Alkynes and Nucleophilic Addition 322
40.1.1.3.1.10 Method 10: Hydroamination of Enynes 323
40.1.1.3.1.11 Method 11: Hydroamination of Methylenecyclopropanes 324
40.1.1.3.1.11.1 Variation 1: Catalysis by Rare Earth Metal Complexes 324
40.1.1.3.1.11.2 Variation 2: Catalysis by Palladium Complexes 325
40.1.1.3.1.11.3 Variation 3: Catalysis by Gold Complexes 325
40.1.1.3.1.12 Method 12: Hydroamination of Cyclopropenes 326
40.1.1.3.1.13 Method 13: Hydroamination of Cyclopropanes 326
40.1.1.3.1.13.1 Variation 1: Catalysis by Palladium Complexes 326
40.1.1.3.1.13.2 Variation 2: Photoamination of Cyclopropanes 327
40.1.1.3.1.14 Method 14: Hydroamination of Aromatic Compounds 327
40.1.1.3.2 Addition of Carbanions to Azomethines 334
40.1.1.3.2.1 Azomethines for Asymmetric Addition of Carbanions 334
40.1.1.3.2.1.1 Method 1: Use of N-(1-Phenylethyl)imines 334
40.1.1.3.2.1.2 Method 2: Use of N-Sulfinylimines 336
40.1.1.3.2.1.3 Method 3: Use of SAMP and RAMP Hydrazones 337
40.1.1.3.2.1.4 Method 4: Use of Chiral Acylhydrazones 338
40.1.1.3.2.1.5 Method 5: Use of Chiral Oxime O-Ethers 339
40.1.1.3.2.1.6 Method 6: Use of Chiral Reagents and Catalysts 340
40.1.1.3.2.2 Addition of Organometallic or Radical Reagents to Azomethines 342
40.1.1.3.2.2.1 Method 1: Addition of Allylmetal Reagents 342
40.1.1.3.2.2.1.1 Variation 1: Of Allyllithium and Allylmagnesium Reagents 343
40.1.1.3.2.2.1.2 Variation 2: Of Allylboranes 346
40.1.1.3.2.2.1.3 Variation 3: Of Allylstannanes 348
40.1.1.3.2.2.1.4 Variation 4: Of Allylsilanes 351
40.1.1.3.2.2.1.5 Variation 5: Of Other Allylic Reagents 354
40.1.1.3.2.2.2 Method 2: Addition of Alkyl- and Arylmetal Reagents 355
40.1.1.3.2.2.2.1 Variation 1: Of Organolithiums and Grignard Reagents 355
40.1.1.3.2.2.2.2 Variation 2: Of Organozinc Reagents 356
40.1.1.3.2.2.2.3 Variation 3: Of Organocerium Reagents 358
40.1.1.3.2.2.2.4 Variation 4: Of Organotransition Metal Species 360
40.1.1.3.2.2.2.5 Variation 5: Of Other Organometallic Reagents 362
40.1.1.3.2.2.3 Method 3: Radical Alkyl Additions 362
40.1.1.3.3 Pericyclic Reactions Involving C==N Units 372
40.1.1.3.3.1 Method 1: Cycloaddition Reactions of N-Acylimines 372
40.1.1.3.3.2 Method 2: Cycloaddition Reactions of N-(Alkoxycarbonyl)imines 374
40.1.1.3.3.2.1 Variation 1: Lewis Acid Mediated Cycloaddition of Biscarbamates 375
40.1.1.3.3.2.2 Variation 2: Enantioselective Catalytic Cycloaddition 376
40.1.1.3.3.3 Method 3: Cycloaddition Reactions of N-Sulfonylimines or N-Phosphorylimines 377
40.1.1.3.3.3.1 Variation 1: Diastereoselective Cycloaddition Reactions of N-Tosylimines 378
40.1.1.3.3.3.2 Variation 2: Enantioselective Catalytic Cycloaddition Reactions of N-Tosylimines 379
40.1.1.3.3.4 Method 4: Cycloaddition Reactions of N-Alkylimines, N-Arylimines, or Their Salts 380
40.1.1.3.3.4.1 Variation 1: Acid-Catalyzed Imino-Diels--Alder Reactions in Aqueous Media 381
40.1.1.3.3.4.2 Variation 2: Diastereoselective Cycloaddition Reactions of N-Alkyl- or N-Arylimines 382
40.1.1.3.3.4.3 Variation 3: Enantioselective Catalytic Cycloaddition Reactions of Alkylated and Arylated Imines 385
40.1.1.3.3.5 Method 5: Cycloaddition Reactions of C-Heteroatom-Substituted Imines 386
40.1.1.4 Synthesis by Rearrangement 394
40.1.1.4.1 Rearrangements from Nitrogen to Carbon 394
40.1.1.4.1.1 Method 1: Stevens and Sommelet--Hauser Rearrangements 394
40.1.1.4.1.2 Method 2: [2,3]-Aza-Wittig and Related Sigmatropic Rearrangements 408
40.1.1.4.1.2.1 Variation 1: [2.3]-Aza-Wittig Rearrangements 408
40.1.1.4.1.2.2 Variation 2: Rearrangements Involving Compounds Containing Sulfur or Selenium 409
40.1.1.4.1.3 Method 3: Rearrangements of Phenylhydrazines and Hydrazobenzenes 411
40.1.1.4.1.4 Method 4: Overman Rearrangement (Aza-Oxa-Cope Rearrangement) 411
40.1.1.4.1.5 Method 5: Rearrangements of N-Substituted Amines 417
40.1.1.4.1.5.1 Variation 1: Fischer--Hepp Rearrangement 417
40.1.1.4.1.5.2 Variation 2: Hofmann--Martius Rearrangement 418
40.1.1.4.1.5.3 Variation 3: Reilly--Hickinbottom and Orton Rearrangements 420
40.1.1.4.1.5.4 Variation 4: Bamberger Rearrangement 420
40.1.1.4.1.5.5 Variation 5: Hofmann--Löffler--Freytag Rearrangement 421
40.1.1.4.2 Rearrangements from Carbon to Nitrogen 422
40.1.1.4.2.1 Method 1: Stieglitz Rearrangements 422
40.1.1.4.2.2 Method 2: Beckmann Rearrangement 422
40.1.1.4.2.3 Method 3: Neber Rearrangement 423
40.1.1.4.2.4 Method 4: Hofmann, Curtius, Schmidt, and Lossen Rearrangements 424
40.1.1.4.2.4.1 Variation 1: Hofmann Rearrangement 425
40.1.1.4.2.4.2 Variation 2: Lossen Rearrangement 430
40.1.1.4.2.4.3 Variation 3: Curtius Rearrangement 433
40.1.1.4.2.4.4 Variation 4: Schmidt Rearrangement 440
40.1.1.5 Synthesis from Other Amino Compounds 448
40.1.1.5.1 Resolution of Chiral Amines 448
40.1.1.5.1.1 Method 1: Resolution by Diastereomeric Crystallization 448
40.1.1.5.1.2 Method 2: Kinetic Resolution 450
40.1.1.5.1.2.1 Variation 1: Enzymatic Kinetic Resolution 450
40.1.1.5.1.2.2 Variation 2: Dynamic Kinetic Resolution Using Enzymes 454
40.1.1.5.1.2.3 Variation 3: Nonenzymatic Kinetic Resolution 456
40.1.1.5.1.3 Method 3: Analytical and Preparative Chromatographic Separation 457
40.1.1.5.1.4 Method 4: Analysis and Separation of Diastereomeric Amine Derivatives 458
40.1.1.5.1.4.1 Variation 1: Using Chiral Solvating Agents 459
40.1.1.5.1.4.2 Variation 2: Using Chiral Derivatizing Agents 460
40.1.1.5.2 The Mannich Reaction 464
40.1.1.5.2.1 Direct Organocatalytic Enantioselective Mannich Reaction 464
40.1.1.5.2.1.1 Method 1: a-Aminoalkylation of Ketones 465
40.1.1.5.2.1.1.1 Variation 1: Proline-Catalyzed Aminoalkylation of Aliphatic Ketones 465
40.1.1.5.2.1.1.2 Variation 2: Chiral Brønsted Acid Catalyzed Aminoalkylation of Ketones 467
40.1.1.5.2.1.1.3 Variation 3: Aminoalkylation under High Pressure 468
40.1.1.5.2.1.2 Method 2: a-Aminomethylation of Ketones 469
40.1.1.5.2.1.2.1 Variation 1: Proline-Catalyzed a-Aminomethylation 469
40.1.1.5.2.1.2.2 Variation 2: a-Aminomethylation of Ketones under Microwave Irradiation 470
40.1.1.5.2.1.3 Method 3: a-Aminoalkylation of Hydroxy and Protected Amino Ketones 471
40.1.1.5.2.1.3.1 Variation 1: Synthesis of syn-1,2-Amino Alcohols 471
40.1.1.5.2.1.3.2 Variation 2: Synthesis of Protected Amino Sugars by Direct Mannich Reaction 472
40.1.1.5.2.1.3.3 Variation 3: Synthesis of Chiral syn-1,2-Diamines 474
40.1.1.5.2.1.3.4 Variation 4: Synthesis of anti-1,2-Amino Alcohols 475
40.1.1.5.2.1.4 Method 4: Asymmetric Cross-Mannich Reaction of Aldehydes 476
40.1.1.5.2.1.4.1 Variation 1: Stereoselective Synthesis of ß-Amino Alcohols 477
40.1.1.5.2.1.4.2 Variation 2: Self-Mannich Reaction of Aliphatic and a-Hydroxy Aldehydes 478
40.1.1.5.2.1.4.3 Variation 3: One-Pot Direct Synthesis of ß-Formyl-a-amino Acids 478
40.1.1.5.2.2 Indirect Organocatalytic Enantioselective Mannich Reaction with Preformed Reagents 480
40.1.1.5.2.2.1 Method 1: ß-Amino Carbonyl Derivatives from Reactions of N-(tert-Butoxycarbonyl)-Protected Imines 480
40.1.1.5.2.2.1.1 Variation 1: Proline-Catalyzed Addition of Aldehydes or Ketones 480
40.1.1.5.2.2.1.2 Variation 2: Chiral Brønsted Acid Catalyzed Reaction of N-(tert-Butoxycarbonyl)-Protected Aldimines 481
40.1.1.5.2.2.2 Method 2: a-Amino Acids by syn-Selective Synthesis 482
40.1.1.5.2.2.2.1 Variation 1: Proline-Catalyzed Reaction of Ketones with N-(4-Methoxyphenyl)-Protected a-Imino Ethyl Glyoxylate 482
40.1.1.5.2.2.2.2 Variation 2: 5-(Pyrrolidin-2-yl)tetrazole-Catalyzed Reaction of Ketones with N-(4-Methoxyphenyl)-Protected Imines 483
40.1.1.5.2.2.2.3 Variation 3: Reaction of Enolizable Aldehydes with N-(4-Methoxyphenyl)-Protected a-Imines 484
40.1.1.5.2.2.3 Method 3: a-Amino Acids by anti-Selective Synthesis 485
40.1.1.5.2.2.3.1 Variation 1: Reaction of Enolizable Aldehydes Catalyzed by a Chiral Amino Sulfonamide 485
40.1.1.5.2.2.3.2 Variation 2: Reaction of Enolizable Aldehydes Catalyzed by a Chiral Pyrrolidine-Based Amino Sulfonamide 486
40.1.1.5.2.2.3.3 Variation 3: Reaction of Enolizable Aldehydes Catalyzed by Amino Acid Derivatives 487
40.1.1.5.2.2.3.4 Variation 4: anti-Mannich Reactions of Unmodified Ketones 488
40.1.1.5.2.2.3.5 Variation 5: Synthesis of Optically Active Quaternary a-Amino Acid Derivatives 489
40.1.1.5.2.2.4 Method 4: ß-Amino Acids by Indirect Mannich Reaction of Ketene Silyl Acetals with Protected Imines 490
40.1.1.5.2.2.4.1 Variation 1: Chiral-Thiourea-Catalyzed Addition of Ketene Silyl Acetals to N-(tert-Butoxycarbonyl)aldimines 490
40.1.1.5.2.2.4.2 Variation 2: Chiral Brønsted Acid Catalyzed Reaction of Aldimines with Ketene Silyl Acetals 491
40.1.1.5.2.2.5 Method 5: ß-Amino Acids by Addition of CH-Acidic 1,3-Dicarbonyl Compounds to Protected Imines 493
40.1.1.5.2.2.5.1 Variation 1: Enantioselective Addition of Malonate to N-(tert-Butoxy-carbonyl)-Protected Aromatic and Aliphatic Aldimines 493
40.1.1.5.2.2.5.2 Variation 2: Addition of ß-Oxo Esters to Protected Imines Catalyzed by Cinchona Alkaloids 493
40.1.1.5.2.2.5.3 Variation 3: Stereoselective Synthesis of a,ß-Diamino Acids Using a Chiral Phase-Transfer Catalyst 494
40.1.1.5.2.3 Metal-Catalyzed Asymmetric Mannich Reaction 496
40.1.1.5.2.3.1 Method 1: Synthesis Using Silyl Enol Ethers and Ketene Silyl Acetals as Nucleophiles 496
40.1.1.5.2.3.1.1 Variation 1: Enantio- and Diastereoselective Synthesis of ß-Amino Carbonyl Compounds 497
40.1.1.5.2.3.1.2 Variation 2: Enantio- and Diastereoselective Synthesis of ß-Amino Ketones in Water 498
40.1.1.5.2.3.1.3 Variation 3: Enantioselective Synthesis of ß-Amino Esters 499
40.1.1.5.2.3.2 Method 2: Synthesis of anti- or syn-ß-Amino-a-hydroxy Ketones 501
40.1.1.5.2.3.2.1 Variation 1: Metal--1,1'-Binaphthalene-2,2'-diol Complexes as Catalyst 501
40.1.1.5.2.3.2.2 Variation 2: Dinuclear Zinc Complexes as Catalyst 502
40.1.1.5.3 Modification of Mannich Adducts 508
40.1.1.5.3.1 Modification of the Amino Group 508
40.1.1.5.3.1.1 Method 1: Deprotection of the N-(tert-Butoxycarbonyl) Group 508
40.1.1.5.3.1.2 Method 2: Deprotection of N-(4-Hydroxyphenyl), N-(4-Methoxyphenyl), and N-(2-Methoxyphenyl) Groups 509
40.1.1.5.3.1.3 Method 3: Deprotection of N-(Diarylphosphoryl) Groups 510
40.1.1.5.3.1.4 Method 4: Deprotection of N-(Arylsulfonyl) Groups 510
40.1.1.5.3.1.5 Method 5: Deprotection of the N-[(R)-2-Hydroxy-1-phenylethyl] Group 511
40.1.1.5.3.1.6 Method 6: Acylation Using Triphosgene 511
40.1.1.5.3.1.7 Method 7: Guanidinylation and the Synthesis of Capreomycidine 513
40.1.1.5.3.1.8 Method 8: Synthesis of Enantioenriched Dihydropyrimidinones 514
40.1.1.5.3.2 Modification of the Carbonyl Group 515
40.1.1.5.3.2.1 Method 1: Enantioselective Synthesis of ß2-Amino Acid Derivatives 515
40.1.1.5.3.2.2 Method 2: Enantioselective Synthesis of ß2,3-Amino Acid Derivatives 517
40.1.1.5.3.2.3 Method 3: Baeyer--Villiger Oxidation 518
40.1.1.5.3.2.4 Method 4: Diastereoselective Reduction: Synthesis of (+)-Polyoxamic Acid 518
40.1.1.5.3.2.5 Method 5: Synthesis of ß-Lactams 520
40.1.1.5.3.2.6 Method 6: Palladium-Catalyzed Carbonylation: Synthesis of (±)-Gelsemine 521
40.1.1.5.3.2.7 Method 7: Synthesis of Peptides: Synthesis of Azumamide A 522
40.1.1.5.3.3 Reduction of the Carbonyl Group and Imines 523
40.1.1.5.3.3.1 Method 1: Enantioselective Synthesis of 1,3-Amino Alcohols: Synthesis of HPA-12 524
40.1.1.5.3.3.2 Method 2: Enantioselective Synthesis of 1,3-Amino Alcohols: Synthesis of (--)-Sedamine 524
40.1.1.5.3.3.3 Method 3: Enantioselective Synthesis of 1,3-Diamines 526
40.1.1.5.4 Substitution on the Amine Nitrogen 530
40.1.1.5.4.1 Dealkylation Reactions of Amines 530
40.1.1.5.4.1.1 Method 1: The von Braun Reaction with Cyanogen Bromide 530
40.1.1.5.4.1.2 Method 2: Dealkylation by Acylation 533
40.1.1.5.4.1.3 Method 3: Nitrosative Dealkylation Reactions 538
40.1.1.5.4.1.4 Method 4: Dealkylation by Transamination 538
40.1.1.5.4.1.5 Method 5: Acid-Mediated Dealkylation 540
40.1.1.5.4.1.6 Method 6: Photolytic Dealkylation 541
40.1.1.5.4.1.7 Method 7: Cleavage of the C--N Bond Using Selenols 541
40.1.1.5.4.1.8 Method 8: Cleavage of the C--N Bond Using Wilkinson's Catalyst 542
40.1.1.5.4.1.9 Method 9: Reductive Cleavage of the C--N Bond 543
40.1.1.5.4.2 Dealkylation Reactions of Ammonium Salts 544
40.1.1.5.4.2.1 Method 1: Thermolytic Dealkylation 544
40.1.1.5.4.2.2 Method 2: The Hofmann Elimination Reaction 544
40.1.1.5.4.2.3 Method 3: Dealkylation with Ammonia, Amines, 2-Aminoethanol, or Other Bases 547
40.1.1.5.4.2.4 Method 4: Dealkylation Reactions with Alkali Metals or Metal Hydrides 548
40.1.1.5.4.2.5 Method 5: Dealkylation Reactions Using Sulfur Nucleophiles 549
40.1.1.5.4.2.6 Method 6: Electrolytic Methods of Cleavage 552
40.1.1.5.4.3 Replacement of Halogen Functionalities 552
40.1.1.5.4.3.1 Method 1: Reaction of Ammonia with Alkyl Halides 552
40.1.1.5.4.3.2 Method 2: Reactions of Primary, Secondary, or Tertiary Amines with Alkyl Halides 555
40.1.1.5.4.3.3 Method 3: Reactions of Alkali Metal Amide Salts 560
40.1.1.5.4.3.4 Method 4: The Gabriel Synthesis and Related Reactions of Carboxylic Acid Derivatives 560
40.1.1.5.4.3.5 Method 5: Reactions of Nitrogen-Containing Derivatives of Carbonic Acid 563
40.1.1.5.4.3.6 Method 6: Reactions with Hexamethylenetetramine 565
40.1.1.5.4.3.7 Method 7: Reaction with Sulfonamides 567
40.1.1.5.4.3.8 Method 8: Reaction with Amides of Phosphorus Acids 568
40.1.1.5.4.3.9 Method 9: Reactions of Alkyl Halides with Silylamines and Silylamides 571
40.1.1.5.4.3.10 Method 10: Intra- and Intermolecular Cyclization Reactions 572
40.1.1.5.4.3.11 Method 11: Reactions of Haloamines 576
40.1.1.5.4.4 Replacement of Oxygen Functionalities 577
40.1.1.5.4.4.1 Method 1: Reactions of Ammonia with Alcoholic Hydroxy Groups 577
40.1.1.5.4.4.2 Method 2: Reactions of Primary or Secondary Amines with Alcoholic Hydroxy Groups 579
40.1.1.5.4.4.3 Method 3: The Mitsunobu and Related Reactions 581
40.1.1.5.4.4.4 Method 4: Intermolecular Schmidt Reaction 588
40.1.1.5.4.4.5 Method 5: Reactions of Ammonia and Amines with Ethers 589
40.1.1.5.4.4.6 Method 6: Alkylation with Sulfates 594
40.1.1.5.4.4.7 Method 7: Alkylation with Sulfonates 595
40.1.1.5.4.4.8 Method 8: Alkylation with Nitrates 598
40.1.1.5.4.4.9 Method 9: Reactions with O--P Groups 598
40.1.1.5.4.4.10 Method 10: Reactions with O--Si Groups 598
40.1.2 Product Subclass 2: Propargylic Amines 608
40.1.2.1 Synthesis of Product Subclass 2 608
40.1.2.1.1 Method 1: Ethynylations of Azomethines 608
40.1.2.1.1.1 Variation 1: Catalyzed by Iridium(I) Complexes 608
40.1.2.1.1.2 Variation 2: Catalyzed by a Copper(I)--pybox Complex 609
40.1.2.1.2 Method 2: Three-Component Coupling of an Aldehyde, an Alkyne, and an Amine 609
40.1.2.1.2.1 Variation 1: Catalyzed by Copper(I) Salts 609
40.1.2.1.2.2 Variation 2: Catalyzed by Copper(I) Bromide/Ruthenium(III) Chloride 611
40.1.2.1.2.3 Variation 3: Catalyzed by Gold(III) Bromide 611
40.1.2.1.2.4 Variation 4: Catalyzed by Silver(I) Salts 612
40.1.2.1.3 Method 3: Copper-Catalyzed Cross-Dehydrogenative Coupling 613
40.1.3 Product Subclass 3: Allylic Amines 616
40.1.3.1 Synthesis of Product Subclass 3 616
40.1.3.1.1 Method 1: Synthesis by Substitution of Hydrogen 616
40.1.3.1.1.1 Variation 1: By Ene-Type Reaction 616
40.1.3.1.1.2 Variation 2: Allylic Amination via the Insertion of Nitrenes 619
40.1.3.1.2 Method 2: Synthesis by the Substitution of a Halogen or a Leaving Group 620
40.1.3.1.2.1 Variation 1: By Palladium-Catalyzed Allylic Substitution 620
40.1.3.1.3 Method 3: Synthesis by Addition 623
40.1.3.1.3.1 Variation 1: Of Nitrogen Reagents to Vinylphosphonium Salts 623
40.1.3.1.3.2 Variation 2: By Aza-Baylis--Hillman Reaction 626
40.1.3.1.3.3 Variation 3: By Aza-Diels--Alder Reaction 630
40.1.3.1.4 Method 4: Synthesis by Rearrangement 635
40.1.3.1.4.1 Variation 1: Of Aziridines 635
40.1.3.1.4.2 Variation 2: By Aza-Oxa-Cope Rearrangement 635
40.1.3.1.4.3 Variation 3: By [2,3]-Sigmatropic Rearrangement 638
40.1.4 Product Subclass 4: n-Nitrogen- or n-Phosphorus-Functionalized Alkylamines (n =2) 644
40.1.4.1 Synthesis of Product Subclass 4 644
40.1.4.1.1 Synthesis by Addition across C==C Bonds 644
40.1.4.1.1.1 Method 1: Amination of 1,3-Dienes 644
40.1.4.1.1.1.1 Variation 1: 1,2-Diamination 644
40.1.4.1.1.1.2 Variation 2: 1,4-Diamination 644
40.1.4.1.1.2 Method 2: Amination of Alkenes 645
40.1.4.1.1.2.1 Variation 1: Direct Addition of Nitrogen Compounds 645
40.1.4.1.1.2.2 Variation 2: a,.-Diamines by Carbonylative Bis(hydroaminomethylation) of a,.-Dialkenes 648
40.1.4.1.1.2.3 Variation 3: 1,2-Diamines via 4,5-Dihydroimidazoles 649
40.1.4.1.2 Synthesis by Addition across C--N Bonds 650
40.1.4.1.2.1 Method 1: Ring Opening of Aziridines 650
40.1.4.1.2.1.1 Variation 1: Addition of Amines 650
40.1.4.1.2.1.2 Variation 2: Addition of Azides 651
40.1.4.1.2.2 Method 2: Ring Opening of Azetidines 654
40.1.4.1.2.3 Method 3: Synthesis by Coupling of Nitrogen Compounds 654
40.1.4.1.2.3.1 Variation 1: Coupling of Imines 654
40.1.4.1.2.3.2 Variation 2: Coupling of Amines 658
40.1.4.1.2.3.3 Variation 3: Coupling of Nitriles 659
40.1.4.1.3 Synthesis by Addition across C--C Bonds 659
40.1.4.1.3.1 Method 1: Amine Addition to Epoxides 659
40.1.4.1.4 Synthesis by Rearrangement 660
40.1.4.1.4.1 Method 1: 1,2-Diamines via [2,3]-Sigmatropic Rearrangement 660
40.1.4.1.4.1.1 Variation 1: Rearrangement of Sulfur Imides 660
40.1.4.1.4.1.2 Variation 2: Rearrangement of Selenium Imides 661
40.1.4.1.4.2 Method 2: 1,2-Diamines via [3,3]-Sigmatropic Rearrangement 662
40.1.4.1.5 Synthesis by Reduction of a-Amino Amides 662
40.1.4.1.6 Synthesis of 2-Nitroamines 663
40.1.4.1.6.1 Method 1: Synthesis by Nitro-Mannich Reaction 663
40.1.4.1.6.2 Method 2: Synthesis by Addition of Nitrogen Compounds to Alkenes 665
40.1.4.1.7 Synthesis of (Aminoalkyl)phosphines 666
40.1.4.1.7.1 Method 1: Synthesis by Amination of Unsaturated Phosphines 666
40.1.4.1.7.2 Method 2: Synthesis by Addition of Phosphines to Unsaturated Amines 666
40.1.4.2 Applications of Product Subclass 4 in Organic Synthesis 667
40.1.5 Product Subclass 5: Aziridines 672
40.1.5.1 Synthesis of Product Subclass 5 672
40.1.5.1.1 Method 1: Addition to Alkenes 672
40.1.5.1.1.1 Variation 1: Addition of Nitrenes 672
40.1.5.1.1.2 Variation 2: Addition of Metal Nitrenoids 677
40.1.5.1.1.3 Variation 3: Addition of Azides 687
40.1.5.1.1.4 Variation 4: Addition of Hydrazine Derivatives 688
40.1.5.1.1.5 Variation 5: Addition of Hydroxylamine Derivatives 689
40.1.5.1.2 Method 2: Addition to Imines 691
40.1.5.1.2.1 Variation 1: Addition of Carbenes 691
40.1.5.1.2.2 Variation 2: Addition of Metal Carbenoids 692
40.1.5.1.2.3 Variation 3: Via Nucleophilic Attack of Anions of 2-Halo and 2-Pseudohalo Esters 696
40.1.5.1.2.4 Variation 4: Cyclization of Azomethine Ylides 704
40.1.5.1.2.5 Variation 5: Addition of Nucleophiles to Azirines 705
40.1.5.1.2.6 Variation 6: Cycloaddition of Azirines 712
40.1.5.1.3 Method 3: Addition to Aldehydes Using Guanidinium Ylides 714
40.1.5.1.4 Method 4: Cyclization Reactions 715
40.1.5.1.4.1 Variation 1: Cyclization of 2-Haloalkanamines 715
40.1.5.1.4.2 Variation 2: Cyclization of 2-Aminoalkanols 720
40.1.5.1.4.3 Variation 3: Cyclization of 2-Azidoalkanols 727
40.1.5.1.4.4 Variation 4: Via Cyclic Sulfates 729
40.1.5.1.4.5 Variation 5: Cyclization of 1-Azido-2-haloalkanes 730
40.1.5.1.4.6 Variation 6: Cyclization of Allenyl-Substituted Amines 731
40.1.5.1.4.7 Variation 7: Cyclization of (2-Bromoallyl)amines 732
40.1.5.1.5 Method 5: Ring Contraction of 4,5-Dihydro-1H-1,2,3-triazoles 732
40.1.5.1.6 Method 6: Substituent Modification 734
40.1.5.1.6.1 Variation 1: Substitution of Existing Substituents 734
40.1.5.1.6.2 Variation 2: Of Hydrogen: Deprotonation 736
40.1.5.2 Applications of Product Subclass 5 in Organic Synthesis 741
40.1.5.2.1 Ring Opening of Saturated Aziridines 741
40.1.5.2.1.1 Method 1: Ring Opening with Hydrogen 742
40.1.5.2.1.1.1 Variation 1: Hydrogenolysis 742
40.1.5.2.1.1.2 Variation 2: By Complex Hydrides 744
40.1.5.2.1.1.3 Variation 3: By Metal Reducing Agents 745
40.1.5.2.1.2 Method 2: Ring Opening Using Oxygen Nucleophiles 746
40.1.5.2.1.2.1 Variation 1: By Water 746
40.1.5.2.1.2.2 Variation 2: By Alcohols 748
40.1.5.2.1.2.3 Variation 3: By Carboxylates 749
40.1.5.2.1.2.4 Variation 4: Intramolecular Ring Opening by Oxygen Nucleophiles 750
40.1.5.2.1.3 Method 3: Ring Opening Using Nitrogen Nucleophiles 753
40.1.5.2.1.3.1 Variation 1: By Aliphatic Amines 753
40.1.5.2.1.3.2 Variation 2: By Aromatic Amines 754
40.1.5.2.1.3.3 Variation 3: By Azide 755
40.1.5.2.1.3.4 Variation 4: By Hydroxylamine 758
40.1.5.2.1.3.5 Variation 5: Intramolecular Ring Opening by Nitrogen Nucleophiles 759
40.1.5.2.1.4 Method 4: Ring Opening Using Sulfur Nucleophiles 759
40.1.5.2.1.5 Method 5: Ring Opening Using Halogen Nucleophiles 761
40.1.5.2.1.6 Method 6: Ring Opening Using Carbon Nucleophiles 764
40.1.5.2.1.6.1 Variation 1: By Carbanions 764
40.1.5.2.1.6.2 Variation 2: By Enolates 770
40.1.5.2.1.6.3 Variation 3: By Arenes 771
40.1.5.2.1.6.4 Variation 4: By Cyanide 773
40.1.5.2.1.7 Method 7: Ring Opening by Deprotonation 774
40.1.5.2.1.7.1 Variation 1: Elimination Reactions 774
40.1.5.2.1.7.2 Variation 2: Rearrangement Reactions 775
40.1.5.2.1.8 Method 8: Ring Opening Using Lewis Acids 776
40.1.5.2.1.9 Method 9: Ring Opening by Thermolysis 778
40.1.5.2.1.10 Method 10: Carbonylative Ring Expansion 779
40.1.5.2.2 Ring Opening of Alkenyl- and Alkynylaziridines 780
40.1.5.2.2.1 Method 1: Ring Opening by Hydride 780
40.1.5.2.2.2 Method 2: Ring Opening by Oxygen Nucleophiles 781
40.1.5.2.2.2.1 Variation 1: By Water 781
40.1.5.2.2.2.2 Variation 2: By Carboxylates 782
40.1.5.2.2.2.3 Variation 3: Intramolecular Ring Opening by Oxygen Nucleophiles 782
40.1.5.2.2.3 Method 3: Ring Opening Using Amino Nucleophiles 783
40.1.5.2.2.4 Method 4: Ring Opening Using Halogen Nucleophiles 784
40.1.5.2.2.5 Method 5: Ring Opening Using Carbon Nucleophiles 784
40.1.5.2.2.5.1 Variation 1: By Carbanions 784
40.1.5.2.2.5.2 Variation 2: With Palladium Catalysis 787
40.1.5.2.2.6 Method 6: Ring Opening via Rearrangement 788
40.1.6 Product Subclass 6: Azetidines 802
40.1.6.1 Synthesis of Product Subclass 6 802
40.1.6.1.1 Ring-Closure Reactions 802
40.1.6.1.1.1 Method 1: Ring Closure of Amines and 1,3-Functionalized Hydrocarbons 802
40.1.6.1.1.1.1 Variation 1: From Amines and 1,3-Dihalo Compounds 802
40.1.6.1.1.1.2 Variation 2: From Amines and 1,3-Diol Derivatives 803
40.1.6.1.1.2 Method 2: Thermal [2 + 2] Cycloaddition of Imines and Alkenes 804
40.1.6.1.1.3 Method 3: Ring Closure of Acyclic Amines 805
40.1.6.1.1.3.1 Variation 1: Of .-Haloamines 805
40.1.6.1.1.3.2 Variation 2: Of .-Amino Alcohols and Derivatives 806
40.1.6.1.1.3.3 Variation 3: Of Alkenyl- or Allenylamines 811
40.1.6.1.1.3.4 Variation 4: Of .,d-Epoxyamines 813
40.1.6.1.1.3.5 Variation 5: Of .-Azidoamines 814
40.1.6.1.1.4 Method 4: Ring Closure of Acyclic Imine Derivatives 814
40.1.6.1.1.5 Method 5: Ring Closure of Stabilized Carbanions (C--C Bond Formation). 817
40.1.6.1.1.5.1 Variation 1: Intramolecular Alkylation of ß-Amino Halides 818
40.1.6.1.1.5.2 Variation 2: Intramolecular Michael Addition 821
40.1.6.1.1.6 Method 6: Photochemical Cyclizations 822
40.1.6.1.1.6.1 Variation 1: Intermolecular Photochemical Cyclizations 822
40.1.6.1.1.6.2 Variation 2: Intramolecular Photochemical Cyclizations 823
40.1.6.1.1.7 Method 7: Cyclizations through Insertion of Carbenoids into N--H Bonds 825
40.1.6.1.1.8 Method 8: Cyclizations through Copper-Catalyzed Intramolecular N-Vinylation 827
40.1.6.1.1.9 Method 9: Cyclization of Amines with Alkenes via Azazircona-cyclopentanes 828
40.1.6.1.2 Reduction of Four-Membered Ring Compounds 829
40.1.6.1.2.1 Method 1: Reduction of Azetidin-2-ones (ß-Lactams) 829
40.1.6.1.2.2 Method 2: Alkenation of Azetidin-2-ones (ß-Lactams) 833
40.1.6.1.2.3 Method 3: Reduction of Azetidinium Ions 835
40.1.6.1.3 Ring-Transformation Reactions 836
40.1.6.1.3.1 Method 1: Ring Expansion of Three-Membered Rings 836
40.1.6.1.3.2 Method 2: Ring Contraction of Five- or Six-Membered Rings 839
40.1.6.1.3.3 Method 3: Ring Transformation of 3-(Chloromethyl)azetidin-2-ones 841
40.1.7 Product Subclass 7: Ammonium Compounds and Nitrogen Ylides 846
40.1.7.1 Synthesis of Product Subclass 7 846
40.1.7.1.1 Method 1: Synthesis of Quaternary Ammonium Compounds from Primary and Secondary Amines 846
40.1.7.1.2 Method 2: Synthesis from Amines and Diazomethane 847
40.1.7.1.2.1 Variation 1: From Amines and Activated Diazomethane 847
40.1.7.1.2.2 Variation 2: From Amino Acids 848
40.1.7.1.3 Method 3: Alkylation of Tertiary Amines 849
40.1.7.1.3.1 Variation 1: With Haloalkanes under Pressure 850
40.1.7.1.3.2 Variation 2: With Tertiary Oxonium Salts 850
40.1.7.1.3.3 Variation 3: With Dialkoxycarbenium Salts 851
40.1.7.1.3.4 Variation 4: With Methyl Trifluoromethanesulfonate 852
40.1.7.1.3.5 Variation 5: With Methyl Chloroformate 853
40.1.7.1.3.6 Variation 6: With O-Alkylisoureas 854
40.1.7.1.3.7 Variation 7: With Dimethyl Sulfate 855
40.1.7.1.3.8 Variation 8: With Electron-Poor Alkenes and Alkynes 856
40.1.7.1.3.9 Variation 9: With Alkylideneammonium Halides 858
40.1.7.1.3.10 Variation 10: Synthesis of Polymer-Bound Ammonium Compounds 859
40.1.7.1.4 Method 4: Synthesis of Compounds Containing Several Quaternary Ammonium Centers 859
40.1.7.1.4.1 Variation 1: Derivatives of Diamines 859
40.1.7.1.4.2 Variation 2: Derivatives of Bis(aminomethyl)arenes 861
40.1.7.1.4.3 Variation 3: Derivatives of N-Alkylated Macrocycles 863
40.1.7.1.5 Method 5: Synthesis of Nitrogen Ylides 864
40.1.7.1.5.1 Variation 1: From Quaternary Ammonium Compounds 864
40.1.7.1.5.2 Variation 2: Addition of a Tertiary Amine to a Metal Carbene 865
40.1.7.1.5.3 Variation 3: Addition of a Tertiary Amine to the Simmons--Smith Reagent 866
40.1.7.2 Applications of Product Subclass 7 in Organic Synthesis 867
Keyword Index 874
Author Index 932
Abbreviations 978

Erscheint lt. Verlag 14.5.2014
Reihe/Serie Science of Synthesis
Science of Synthesis
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte amines • ammonium salts • AMM ONIUM SALTS • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • Haloamines • Hydroxylamines • Mechanism • methods in organic synthesis • methods peptide synthesis • nitrogen • one saturated carbon-heteroatom bond • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Practical • practical organic chemistry • Reactions • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation
ISBN-10 3-13-172171-5 / 3131721715
ISBN-13 978-3-13-172171-6 / 9783131721716
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Wasserzeichen)
Größe: 36,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99