Bayesian Inference for Probabilistic Risk Assessment - Dana Kelly, Curtis Smith

Bayesian Inference for Probabilistic Risk Assessment

A Practitioner's Guidebook
Buch | Softcover
228 Seiten
2013
Springer London Ltd (Verlag)
978-1-4471-2708-6 (ISBN)
235,39 inkl. MwSt
Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis “building blocks” that can be modified, combined, or used as-is to solve a variety of challenging problems.

The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.

Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.

1. Introduction and Motivation.- 2. Introduction to Bayesian Inference.- 3. Bayesian Inference for Common Aleatory Models.- 4. Bayesian Model Checking.- 5. Time Trends for Binomial and Poisson Data.- 6. Checking Convergence to Posterior Distribution.- 7. Hierarchical Bayes Models for Variability.- 8. More Complex Models for Random Durations.- 9. Modeling Failure with Repair.- 10. Bayesian Treatment of Uncertain Data.- 11. Bayesian Regression Models.- 12. Bayesian Inference for Multilevel Fault Tree Models.- 13. Additional Topics.

Reihe/Serie Springer Series in Realibility Engineering
Zusatzinfo XII, 228 p.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Maschinenbau
Schlagworte Bayesian inference • Bayesian networks • MCMC • probabilistic risk assessment • Reliability
ISBN-10 1-4471-2708-0 / 1447127080
ISBN-13 978-1-4471-2708-6 / 9781447127086
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Weg zur Datenanalyse

von Ludwig Fahrmeir; Christian Heumann; Rita Künstler …

Buch | Softcover (2024)
Springer Spektrum (Verlag)
49,99
Eine Einführung für Wirtschafts- und Sozialwissenschaftler

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
29,95