Computational Contact Mechanics (eBook)
XXII, 446 Seiten
Springer Berlin (Verlag)
978-3-642-31531-2 (ISBN)
This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation.
The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.
Differential Geometry of Surfaces and Curves.- Closest Point Projection Procedure and Corresponding Curvilinear Coordinate System.- Geometry and Kinematics of Contact.- Weak Formulation of Contact Conditions.- Contact Constraints and Constitutive Equations for Contact Tractions.- Linearization of the Weak Forms – Tangent Matrices in a Covariant Form.- Surface-To-Surface Contact – Various Aspects for Implementations.- Special Case of Implementation – Reduction into 2D Case.- Implementation of Contact Algorithms with High Order FE.- Anisotropic Adhesion-Friction Models – Implementation.- Experimental Validations of the Coupled Anistropi.- Various Aspects of Implementation of the Curve-To-Curve Contact Model.- 3D-Generalization of the Euler-Eytelwein Formula Considering Pitch.
Erscheint lt. Verlag | 14.8.2012 |
---|---|
Reihe/Serie | Lecture Notes in Applied and Computational Mechanics | Lecture Notes in Applied and Computational Mechanics |
Zusatzinfo | XXII, 446 p. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Schlagworte | Closest Point Projection Procedure • Computational Contact Mechanics • Contact Mechanics • Covariant • Existence • finite elements • Geometry of Surfaces and Curves • Linearization • Numerical Methods • Solid-Beam • Surface-To-Surface • uniqueness |
ISBN-10 | 3-642-31531-3 / 3642315313 |
ISBN-13 | 978-3-642-31531-2 / 9783642315312 |
Haben Sie eine Frage zum Produkt? |
Größe: 19,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich