Computational Contact Mechanics

Geometrically Exact Theory for Arbitrary Shaped Bodies
Buch | Hardcover
XXII, 446 Seiten
2012 | 2013
Springer Berlin (Verlag)
978-3-642-31530-5 (ISBN)
160,49 inkl. MwSt
This book presents a systematic analysis of geometrical situations leading to contact pairs: point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface, and offers the associated numerical analysis as well as new analytical results.

This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation.

The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.

Differential Geometry of Surfaces and Curves.- Closest Point Projection Procedure and Corresponding Curvilinear Coordinate System.- Geometry and Kinematics of Contact.- Weak Formulation of Contact Conditions.- Contact Constraints and Constitutive Equations for Contact Tractions.- Linearization of the Weak Forms - Tangent Matrices in a Covariant Form.- Surface-To-Surface Contact - Various Aspects for Implementations.- Special Case of Implementation - Reduction into 2D Case.- Implementation of Contact Algorithms with High Order FE.- Anisotropic Adhesion-Friction Models - Implementation.- Experimental Validations of the Coupled Anistropi.- Various Aspects of Implementation of the Curve-To-Curve Contact Model.- 3D-Generalization of the Euler-Eytelwein Formula Considering Pitch.

Erscheint lt. Verlag 15.8.2012
Reihe/Serie Lecture Notes in Applied and Computational Mechanics
Zusatzinfo XXII, 446 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 838 g
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Mechanik
Technik Maschinenbau
Schlagworte Closest Point Projection Procedure • Computational Contact Mechanics • Contact Mechanics • Covariant • Existence • finite elements • Geometry of Surfaces and Curves • Kontaktmechanik • Linearization • Numerical Methods • Solid-Beam • Surface-To-Surface • uniqueness
ISBN-10 3-642-31530-5 / 3642315305
ISBN-13 978-3-642-31530-5 / 9783642315305
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
28,00
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
39,99