Essential Guide to Video Processing -  Alan C. Bovik

Essential Guide to Video Processing (eBook)

eBook Download: PDF | EPUB
2009 | 1. Auflage
778 Seiten
Elsevier Science (Verlag)
978-0-08-092250-8 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
70,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This comprehensive and state-of-the art approach to video processing gives engineers and students a comprehensive introduction and includes full coverage of key applications: wireless video, video networks, video indexing and retrieval and use of video in speech processing. Containing all the essential methods in video processing alongside the latest standards, it is a complete resource for the professional engineer, researcher and graduate student.

  • Numerous conceptual and numerical examples
  • All the latest standards are thoroughly covered: MPEG-1, MPEG-2, MPEG-4, H.264 and AVC
  • Coverage of the latest techniques in video security

'Like its sister volume 'The Essential Guide to Image Processing,' Professor Bovik's Essential Guide to Video Processing provides a timely and comprehensive survey, with contributions from leading researchers in the area. Highly recommended for everyone with an interest in this fascinating and fast-moving field.' -Prof. Bernd Girod, Stanford University, USA

* Edited by a leading person in the field who created the IEEE International Conference on Image Processing, with contributions from experts in their fields.
* Numerous conceptual and numerical examples
*All the latest standards are thoroughly covered: MPEG-1, MPEG-2, MPEG-4, H.264 and AVC.
* Coverage of the latest techniques in video security

Al Bovik is the General Dynamics Endowed Fellow and Professor in the Department of Electrical and Computer Engineering at the University of Texas at Austin, where he is the Associate Director of the Center for Vision and Image Sciences. He has published nearly 300 techincal articles in the general area of image and video processing and holds two U.S. patents. Dr. Bovik is a recipient of the IEEE Signal Processing Society Meritorious Service Award (1998), and is a two-time Honorable Mention winner of the international Pattern Recognition Society Award. He is a fellow of the IEEE, is the Editor-in-Chief of the IEEE Transactions on Image Processing, serves on many other boards and panels, and was the Founding General Chairman of the IEEE International Conference on Image Processing, which was first held in Austin, Texas in 1994.
This comprehensive and state-of-the art approach to video processing gives engineers and students a comprehensive introduction and includes full coverage of key applications: wireless video, video networks, video indexing and retrieval and use of video in speech processing. Containing all the essential methods in video processing alongside the latest standards, it is a complete resource for the professional engineer, researcher and graduate student. Numerous conceptual and numerical examples All the latest standards are thoroughly covered: MPEG-1, MPEG-2, MPEG-4, H.264 and AVC Coverage of the latest techniques in video security "e;Like its sister volume "e;The Essential Guide to Image Processing,"e; Professor Bovik's Essential Guide to Video Processing provides a timely and comprehensive survey, with contributions from leading researchers in the area. Highly recommended for everyone with an interest in this fascinating and fast-moving field."e; -Prof. Bernd Girod, Stanford University, USA Edited by a leading person in the field who created the IEEE International Conference on Image Processing, with contributions from experts in their fields Numerous conceptual and numerical examples All the latest standards are thoroughly covered: MPEG-1, MPEG-2, MPEG-4, H.264 and AVC Coverage of the latest techniques in video security

Front Cover 1
The Essential Guide to Video Processing 4
Copyright Page 5
Table of Contents 6
Preface 18
About the Author 20
Chapter 1. Introduction to Digital Video Processing 22
1.1 Sampled Video 24
1.2 Video Transmission 27
1.3 Objectives of this Guide 28
1.4 Organization of the Guide 29
Chapter 2. Video Sampling and Interpolation 32
2.1 Introduction 32
2.2 Spatiotemporal Sampling Structures 33
2.3 Sampling and Reconstruction of Continuous Time-Varying Imagery 37
2.4 Sampling Structure Conversion 41
2.4.1 Frame-rate Conversion 43
2.4.2 Spatiotemporal Sampling Structure Conversion 47
2.5 Conclusion 49
References 49
Further Information 50
Chapter 3. Motion Detection and Estimation 52
3.1 Introduction 52
3.2 Notation and Preliminaries 53
3.2.1 Binary Hypothesis Testing 53
3.2.2 Markov Random Fields 54
3.2.3 MAP Estimation 55
3.2.4 Variational Formulations 55
3.3 Motion Detection 56
3.3.1 Hypothesis Testing with Fixed Threshold 57
3.3.2 Hypothesis Testing with Adaptive Threshold 59
3.3.3 MAP MRF Formulation 62
3.3.4 MAP Variational Formulation 63
3.3.5 Experimental Comparison of Motion Detection Methods 64
3.4 Motion Estimation 65
3.4.1 Motion Models 66
3.4.2 Estimation Criteria 72
3.4.3 Search Strategies 75
3.5 Practical Motion Estimation Algorithms 77
3.5.1 Global Motion Estimation 77
3.5.2 Block Matching 80
3.5.3 Phase Correlation 82
3.5.4 Optical Flow via Regularization 83
3.5.5 MAP Estimation of Dense Motion 84
3.5.6 Experimental Comparison of Motion Estimation Methods 85
3.6 Perspectives 86
3.7 Acknowledgments 87
References 87
Chapter 4. Video Enhancement and Restoration 90
4.1 Introduction 90
4.2 Spatiotemporal Noise Filtering 93
4.2.1 Linear Filters 93
4.2.2 Order-Statistic Filters 97
4.2.3 Multiresolution Filters 100
4.3 Coding Artifact Reduction 103
4.3.1 Artifact Reduction in the Spatial Domain 104
4.3.2 Artifact Reduction in the Frequency Domain 104
4.4 Blotch Detection and Removal 105
4.4.1 Blotch Detection 106
4.4.2 Motion Vector Repair and Interpolating Corrupted Intensities 109
4.4.3 Video Inpainting 112
4.4.4 Restoration in Conditions of Difficult Object Motion 113
4.5 Vinegar Syndrome Removal 115
4.6 Intensity Flicker Correction 118
4.6.1 Flicker Parameter Estimation 119
4.6.2 Estimation on Sequences with Motion 120
4.7 Kinescope Moiré Removal 122
4.8 Scratch Removal 124
4.9 Conclusions 125
Acknowledgements 126
References 126
Chapter 5. Video Stabilization and Mosaicing 130
5.1 Introduction 130
5.1.1 Video Stabilization 131
5.1.2 Outline 131
5.2 Biological Motivation: Insect Navigation 132
5.2.1 Centering Behavior and Collision Avoidance 132
5.2.2 Control of Flight Speed and Stabilization 133
5.2.3 Measuring Distance by Integrating Optical Flow 133
5.3 Camera Model and Image Motion Model 134
5.3.1 Camera Model 134
5.3.2 Effect of Camera Motion 135
5.3.3 Image Features 136
5.3.4 Structure from Motion 137
5.3.5 Feature based Algorithms 138
5.4 Flow-Based Approaches 139
5.4.1 Global Flow Models 139
5.4.2 Flow-Based Algorithm 140
5.5 Stabilization and Mosaicing 143
5.5.1 Video Mosaicing 145
5.6 Stabilization and Mosaicing with Additional Information 148
5.6.1 VIVID Metadata 148
5.6.2 Stabilization with Metadata 149
5.6.3 Inertial Measurements 151
5.6.4 Stabilization with Inertial Measurements 151
5.6.5 Motion Segmentation 155
5.7 Motion Super-resolution 155
5.8 Three-dimensional Stabilization 158
5.9 Summary 158
Acknowledgements 159
References 159
Chapter 6. Video Segmentation 162
6.1 Introduction 162
6.2 Scene Change Detection 163
6.3 Spatiotemporal Change Detection 165
6.3.1 Spatial Change Detection Using Two Frames 165
6.3.2 Temporal Integration 166
6.3.3 Combination with Spatial Segmentation 167
6.4 Motion Segmentation 167
6.4.1 Dominant Motion Segmentation 168
6.4.2 Multiple Motion Segmentation 171
6.5 Simultaneous Motion Estimation and Segmentation 181
6.5.1 Motion-Field Model and MAP Framework 182
6.5.2 Two-Step Iteration Algorithm 183
6.6 Semantic Video Object Segmentation 185
6.6.1 Chroma-Keying 185
6.6.2 Semiautomatic Segmentation 185
6.7 Examples 186
6.8 Performance Evaluation of Video Segmentation 191
Acknowledgments 191
References 191
Chapter 7. Motion Tracking in Video 196
7.1 Introduction 196
7.2 Rigid Object Tracking 201
7.2.1 2D Rigid Object Tracking 201
7.2.2 3D Rigid Object Tracking 226
7.3 Articulated Object Tracking 230
7.3.1 3D Articulated Object Tracking 230
7.3.2 2D Articulated Object Tracking 240
References 241
Chapter 8. Basic Transform Video Coding 252
8.1 Introduction to Video Compression 253
8.2 Video Compression Application Requirements 258
8.3 Digital Video Signals and Formats 262
8.3.1 Sampling of Analog Video Signals 262
8.3.2 Digital Video Formats 264
8.4 Video Compression Techniques 266
8.4.1 Entropy and Predictive Coding 267
8.4.2 Block Transform Coding—The DCT 269
8.4.3 Quantization 271
8.4.4 MC and Estimation 274
8.5 Transform Coding: Introduction to the Video Encoding Standards 277
8.5.1 Transform Coding Standard Example: The H.261 Video Encoder 279
8.6 Closing Remarks 286
References 286
Chapter 9. MPEG-1 and MPEG-2 Video Standards 288
9.1 MPEG-1 Video Coding Standard 288
9.1.1 Introduction 288
9.1.2 MPEG-1 Video Coding versus H.261 289
9.1.3 MPEG-1 Video Structure 291
9.1.4 Summary of the Major Differences between MPEG-1 Video and H.261 295
9.1.5 Simulation Model 296
9.1.6 MPEG-1 Video Bit-Stream Structures 297
9.1.7 Summary 298
9.2 MPEG-2 Video Coding Standard 298
9.2.1 Introduction 298
9.2.2 MPEG-2 Profiles and Levels 300
9.2.3 MPEG-2 Video Input Resolutions and Formats 301
9.2.4 MPEG-2 Video Coding Standard Compared to MPEG-1 302
9.2.5 Scalable Coding 307
9.2.6 Data Partitioning 309
9.2.7 Other Tools for Error Resilience 310
9.2.8 Test Model 310
9.2.9 MPEG-2 Video and System Bit-Stream Structures 311
9.2.10 Summary 312
References 313
Chapter 10. MPEG-4 Visual and H.264/AVC: Standards for Modern Digital Video 316
10.1 Introduction 316
10.2 Terminology 317
10.3 MPEG-4 Part 2 319
10.3.1 Object-based Representation 319
10.3.2 Video Object Coding 320
10.3.3 Mesh Object Coding 325
10.3.4 Model-based Coding 326
10.3.5 Still Texture Coding 328
10.3.6 Scalability 328
10.3.7 Error Resilience 329
10.3.8 MPEG-4 Part 2 Profiles 329
10.4 MPEG-4 Part 10: H.264/AVC 331
10.4.1 H.264/AVC Video Coding Layer: Technical Overview 331
10.4.2 Profiles 343
10.5 MPEG-4 Compression Performance 344
10.5.1 MPEG-4 Part 2 344
10.5.2 MPEG-4 Part 10: H.264/AVC 346
10.6 MPEG-4 Video Applications 347
10.7 Conclusions and Outlook 348
Acknowledgment 349
References 349
Chapter 11. Interframe Subband/Wavelet Scalable Video Coding 352
11.1 Introduction 352
11.2 Motion Estimation and Compensation for MCTF 354
11.2.1 Connected and Unconnected Blocks 356
11.2.2 Using Chroma for Motion Estimation 358
11.2.3 Improving the Haar MCTF 359
11.3 New Haar MCTF 363
11.3.1 Overlapped Block Motion Compensation 365
11.3.2 Scalable Motion Vector Coding 366
11.4 EZBC Coder 369
11.4.1 Coding Process 370
11.4.2 Context Modeling 372
11.4.3 Scalability 373
11.4.4 Packetization 374
11.4.5 Frequency Roll-Off 374
11.5 Extension to LeGall and Tabatabai 5/3 Filtering 376
11.6 Objective and Visual Comparisons 378
11.6.1 Some Visual Results 378
11.7 Multiple Adaptations 381
11.8 Related Coders 382
11.9 Conclusions 384
References 384
Chapter 12. Digital Video Transcoding 388
12.1 Introduction 388
12.2 Video Transcoding for Bit Rate Reduction 390
12.2.1 Transcoding of Intracoded Frame 391
12.2.2 Transcoding of Intercoded Frame 393
12.2.3 Fast Video-Transcoding Architectures 393
12.2.4 DCT Domain IMC 396
12.3 Heterogeneous Video Transcoding 398
12.3.1 MV Estimation for Spatial Resolution Reduction 400
12.3.2 MV Estimation for Temporal Resolution Reduction 401
12.3.3 Spatial Resolution Reduction 402
12.3.4 Macro-block-Coding Type Decision 404
12.4 Bit Rate Control in Video Transcoding 404
12.5 Error-Resilient Video Transcoding 405
12.6 Concluding Remarks 406
References 407
Chapter 13. Embedded Video Codecs 410
13.1 Introduction 410
13.2 Block-Based Video Coding 412
13.3 Embedded Video Codec Requirements and Constraints 414
13.4 Embedded Video Codec Design Flow 418
13.4.1 Understanding the Chip Architecture 418
13.4.2 Understanding the Codec Algorithms 421
13.4.3 Modularity and APIs Definitions 422
13.4.4 Reference Codec Software Development in Golden C 425
13.4.5 Platform-Specific Development and Porting 426
13.4.6 Kernel Optimization and Integration 427
13.4.7 Concurrent Processing 428
13.4.8 Overall Optimization 429
13.4.9 Stress and Conformance Testing 431
13.5 New Trends 432
13.6 Summary 434
References 435
Chapter 14. Video Quality Assessment 438
14.1 Introduction 438
14.2 HVS Modeling Based Methods 440
14.3 Feature Based Methods 443
14.3.1 VQM 443
14.4 Motion Modeling Based Methods 446
14.5 Performance 452
14.6 Conclusions 454
References 455
Chapter 15. A Unified Framework for Video Indexing, Summarization, Browsing, and Retrieval 458
15.1 Introduction 458
15.1.1 Content Categories 459
15.1.2 Storage and Compression 460
15.1.3 Terminology 461
15.2 Image and Video Features 463
15.2.1 Statistical Features 463
15.2.2 Compressed-Domain Features 471
15.2.3 Content-Based Features 473
15.3 Video Analysis 480
15.3.1 Shot Boundary Detection 480
15.3.2 Key-Frame Extraction 480
15.3.3 Play/Break Segmentation 481
15.3.4 Audio Marker Detection 481
15.3.5 Video Marker Detection 481
15.4 Video Representation 481
15.4.1 Video Representation for Scripted Content 481
15.4.2 Video Representation for Unscripted Content 483
15.5 Video Browsing 484
15.5.1 Video Browsing Using ToC-Based Summary 484
15.5.2 Video Browsing Using Highlights-Based Summary 484
15.6 Video Retrieval 484
15.6.1 Feature-Based Retrieval (Statistical and Compressed) 485
15.6.2 Content-Based Retrieval 485
15.6.3 Relevance Feedback 486
15.6.4 Query-Concept Learner 487
15.6.5 Efficient Annotation through Active Learning 487
15.6.6 Considerations in Multimedia Databases 488
15.7 A Unified Framework for Indexing, Summarization, Browsing, and Retrieval 489
15.8 Conclusions and Promising Research Directions 490
Acknowledgment 491
References 491
Chapter 16. Video Communication Networks 494
16.1 Introduction 495
16.2 Video Compression Standards 496
16.2.1 Introduction 496
16.2.2 Overview 497
16.2.3 MPEG-2 Video Compression Standard 499
16.2.4 MPEG-2 Systems Standard 500
16.3 Video Communication Networks 506
16.3.1 Introduction 506
16.3.2 Hybrid Fiber-Coax Networks 507
16.3.3 Digital Subscriber Loop 508
16.3.4 Wireless Networks 509
16.3.5 Fiber Optics 512
16.3.6 Integrated Services Digital Network 513
16.3.7 ATM Networks 513
16.4 Internet Protocol Networks 520
16.4.1 Introduction 520
16.4.2 Multicast Backbone 523
16.4.3 Real-Time Transport Protocol 524
16.4.4 Real-Time Transport Control Protocol 532
16.4.5 Real-Time Transport Streaming Protocol 538
16.4.6 H.323 539
16.4.7 Session Initiation Protocol 541
16.4.8 Integrated Services—Resource Reservation Protocol 542
16.4.9 Differentiated Services—DiffServ 544
16.5 Summary 546
References 546
Chapter 17. Video Security and Protection 548
17.1 Introduction 548
17.2 Video Encryption 548
17.2.1 Candidate Domains for Encrypting Multimedia 550
17.2.2 Building Blocks for Media Encryption 551
17.2.3 Security Evaluation of Media Encryption 557
17.2.4 Video Encryption System Design 560
17.3 Video Authentication 566
17.3.1 Background 566
17.3.2 Content Level Authentication 567
17.3.3 Stream Level Authentication 572
17.4 Video Fingerprinting for Traitor Tracing 574
17.4.1 The Background 575
17.4.2 Coded Fingerprinting 577
17.4.3 Experimental Results of Video Fingerprinting 584
17.4.4 Intravideo Collusion 587
References 587
Chapter 18. Wireless Video Streaming 592
18.1 Introduction 592
18.2 On Joint Source-Channel Coding 596
18.2.1 Rate-Distortion Theory 596
18.2.2 Operational Rate-Distortion Theory 597
18.2.3 Practical Constraints in Video Communications 598
18.2.4 Illustration 599
18.3 Video Compression and Transmission 600
18.3.1 Video Transmission System 600
18.3.2 Video Compression Basics 602
18.3.3 Channel Models 605
18.3.4 End-to-End Distortion 606
18.3.5 Error Resilient Source Coding 608
18.4 Channel Coding 610
18.4.1 Forward Error Correction 611
18.4.2 Retransmission 613
18.5 Joint Source-Channel Coding 615
18.5.1 Problem Formulation 615
18.5.2 Internet Video Transmission 617
18.5.3 Wireless Video Transmission 620
18.6 Distributed Multimedia Communications 625
18.6.1 Video Streaming over Multiuser Networks 625
18.6.2 Mobile TV Standards 629
18.6.3 Peer-to-Peer Internet Video Broadcasting 631
18.6.4 Video Streaming over Multihop Wireless Networks 632
18.7 Discussion 633
References 634
Chapter 19. Video Surveillance 640
19.1 Introduction 640
19.2 Categorizing Applications, Target Scenes, and Video Analytics 641
19.2.1 Video Surveillance Applications 641
19.2.2 Video Surveillance Target Scenes 645
19.2.3 Video Analytics for Video Surveillance 647
19.3 Review of Video Analytic Algorithms 649
19.3.1 Motion and Change Detection 650
19.3.2 Object Detection 656
19.3.3 Object Tracking 658
19.3.4 Behavioral Analysis Tools 665
19.3.5 Gait Recognition 666
19.3.6 Face Recognition 669
19.4 Conclusion 669
References 670
Chapter 20. Face Recognition from Video 674
20.1 Introduction 674
20.2 Properties and Literature Review 676
20.2.1 Set of Observations 676
20.2.2 Temporal Continuity/Dynamics 682
20.2.3 3D Model 684
20.3 A General Framework of Probabilistic Identity Characterization 686
20.3.1 Recognition Setting and Issues 689
20.4 Instances of Probabilistic Identity Characterization 691
20.4.1 FR from a Group of Still Images 691
20.4.2 FR from a Video Sequence 696
20.5 A System Identification Approach 703
20.5.1 The ARMA Model 703
20.5.2 Framework for Recognition 704
20.5.3 Experiments, Results, and Discussion 705
20.6 Conclusions 706
References 706
Chapter 21. Audiovisual Speech Processing 710
21.1 Introduction 710
21.2 Analysis of Visual Signals 712
21.2.1 Face Detection, Mouth, and Lip Tracking 713
21.2.2 Visual Features 715
21.2.3 Two Visual Feature Extraction Systems 719
21.3 Audiovisual Information Fusion 721
21.3.1 Speech Classes in Audiovisual Integration 721
21.3.2 Classifiers in Speech Applications 723
21.3.3 Feature and Classifier Fusion 725
21.4 Audiovisual Automatic Speech Recognition 728
21.4.1 Bimodal Corpora for ASR 729
21.4.2 Experimental Results 730
21.5 Audiovisual Speech Synthesis 733
21.5.1 Coarticulation Modeling 734
21.5.2 Facial Animation 735
21.5.3 Visual Text-to-Speech 738
21.5.4 Speech-to-Video Synthesis 739
21.5.5 Visual Speech Synthesis Evaluation 742
21.6 Audiovisual Speaker Recognition 744
21.7 Summary and Discussion 750
References 752
Index 760

Erscheint lt. Verlag 7.7.2009
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
ISBN-10 0-08-092250-3 / 0080922503
ISBN-13 978-0-08-092250-8 / 9780080922508
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 19,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
43,19
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
39,59
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
32,39