Für diesen Artikel ist leider kein Bild verfügbar.

SET THEORY (eBook)

eBook Download: PDF
2000 | 1. Auflage
513 Seiten
Elsevier Science (Verlag)
978-0-08-095495-0 (ISBN)
Systemvoraussetzungen
217,53 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Provability, Computability and Reflection
SET THEORY

Front Cover 1
Set Theory: With an Introduction to Descriptive Set Theory 4
Copyright Page 5
Contents 12
Preface to the first edition 6
Preface to the second edition 9
CHAPTER I. Algebra of sets 16
§ 1. Propositional calculus 16
§ 2. Sets and operations on sets 19
§ 3. Inclusion, Empty set 22
§ 4. Laws of union, intersection, and subtraction 25
§ 5. Properties of symmetric difference 28
§ 6. The set 1, complement 33
§ 7. Constituents 36
§ 8. Applications of the algebra of sets to topology 42
§ 9. Boolean algebras 48
10. Lattices 57
CHAPTER II. Axioms of set theory. Relations. Functions 61
§ 1. Set theoretical formulas. Quantifiers 61
§ 2. Axioms of set theory 67
§ 3. Some simple consequences of the axioms 73
§ 4. Cartesian products . Relations 77
§ 5. Equivalence relations. Partitions 81
§ 6. Functions 84
§ 7. Images and inverse images 89
§ 8. Functions consistent with a given equivalence relation. Factor Boolean algebras 93
§ 9. Order relations 95
§ 10. Relational systems, their isomorphisms and types 100
CHAPTER III. Natural numbers. Finite and infinite sets 104
§ 1. Natural numbers 104
§ 2. Definitions by induction 108
§ 3. The mapping J of the set N × N onto N and related mappings 113
§ 4. Finite and infinite sets 117
CHAPTER IV. Generalized union, intersection and Cartesian product 122
§ 1. Set-valued functions . Generalized union and intersection 122
§ 2. Operations on infinite sequences of sets 132
§ 3. Families of sets closed under given operations 136
§ 4. s-additive and d-multiplicative families of sets 139
§ 5. Reduction and separation properties 142
§ 6. Generalized Cartesian products 144
§ 7. Cartesian products of topological spaces 148
§ 8. The Tychonoff theorem 152
§ 9. Reduced direct products 155
§ 10. Infinite operations in lattices and in Boolean algebras 160
§ 11. Extensions of ordered sets to complete lattices 167
§ 12. Representation theory for distributive lattices 173
CHAPTER V. Theory of cardinal numbers 179
§ 1. Equipollence. Cardinal numbers 179
§ 2. Countable sets 184
§ 3. The hierarchy of cardinal numbers 189
§ 4. The arithmetic of cardinal numbers 193
§ 5. Inequalities between cardinal numbers. The Cantor–Bernstein theorem and its generalizations 196
§ 6. Properties of the cardinals a and c 203
§ 7. The generalized sum of cardinal numbers 206
§ 8. The generalized product of cardinal numbers 210
CHAPTER VI. Linearly ordered sets 216
§ 1. Introduction 216
§ 2. Dense, scattered, and continuous sets 220
§ 3. Order types ., ., and . 225
§ 4. Arithmetic of order types 232
§ 5. Lexicographical ordering 235
CHAPTER VII. Well-ordered sets 239
§ 1. Definitions. Principle of transfinite induction 239
§ 2. Ordinal numbers 243
§ 3. Transfinite sequences 245
§ 4. Definitions by transfinite induction 248
§ 5. Ordinal arithmetic 254
§ 6. Ordinal exponentiation 260
§ 7. Expansions of ordinal numbers for an arbitrary base 263
§ 8. The well-ordering theorem 269
§ 9. Von Neumann's method of elimination of ordinal numbers 277
CHAPTER VIII. Alephs and related topics 282
§ 1. Ordinal numbers of power a 282
§ 2. The cardinal K(m). Hartogs' aleph 285
§ 3. Initial ordinals 287
§ 4. Alephs and their arithmetic 290
§ 5. The exponentiation of alephs 295
§ 6. The exponential hierarchy of cardinal numbers 299
§ 7. The continuum hypothesis 305
§ 8. The number of prime ideals in the algebra P(A) 311
§ 9. m-disjoint sets 315
§ 10. Families of disjoint open sets 317
§ 11. Equivalence of certain statements about cardinal numbers with the axiom of choice 323
CHAPTER IX. Trees and partitions 330
§ 1. Trees 330
§ 2. The lexicographical ordering of zero-one sequences .. sets 334
§ 3. König's infinity lemma 341
§ 4. Arohszajn's trees 344
§ 5. Souslin trees 347
§ 6. Some partition theorems 351
CHAPTER X. Inaccessible cardinals 357
§ 1. Normal functions and stationary sets 357
§ 2. Weakly and strongly inaccessible cardinals 363
§ 3. A digression on models of S. [TR] 367
§ 4. Higher types of inaccessible numbers 371
§ 5. Weakly compact cardinals 375
§ 6. Measurable cardinals 381
§ 7. Measurable cardinals and reduced products 390
Incroduction to descriptive set theory 400
CHAPTER XI. Auxiliary notions 401
§ 1. The notion of a metric space. Various fundamental topological notions 401
§ 2. Exponential topology. Compact-open topology 407
§ 3. Complete and Polish spaces 411
§ 4. L-measurable mappings 415
§ 5. The operation A 424
§ 6. The Lusin sieve 427
CHAPTER XII. Borel sets. B-measurable functions. Baire property 430
§ 1. Elementary properties of Borel subsets of a metric space 430
§ 2. Ambiguous Borel sets 432
§ 3. Borel-measurable functions 434
§ 4. B-measurable complex and product functions 436
§ 5. Universal functions for Borel classes 438
§ 6. Borel subsets of Polish spaces 441
§ 7. Further properties of Borel sets 442
§ 8. Baire property 443
CHAPTER XIII. Souslin spaces. Projective sets 449
§ 1. Souslin spaces. Fundamental properties 449
§ 2. Applications of countable order types to Souslin spaces 459
§ 3. Coanalytic sets (CA-sets) 462
§ 4. The s-algebra S generated by Souslin sets and the S-measurablemappings 466
§ 5. The PCA-sets and sets of higher projective classes 470
CHAPTER XIV. Measurable selectors 473
§ 1. The general selector theorem 473
§ 2. Selectors for measurable partitions of Polish spaces 478
§ 3. Selectors for point-inverses of continuous mappings 481
Bibliography 491
List of important symbols 512
Subject index 517

Erscheint lt. Verlag 1.4.2000
Sprache englisch
Themenwelt Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Logik / Mengenlehre
Naturwissenschaften
Technik
ISBN-10 0-08-095495-2 / 0080954952
ISBN-13 978-0-08-095495-0 / 9780080954950
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eine praxisorientierte Einführung mit Anwendungen in Oracle, SQL …

von Edwin Schicker

eBook Download (2017)
Springer Vieweg (Verlag)
34,99
Unlock the power of deep learning for swift and enhanced results

von Giuseppe Ciaburro

eBook Download (2024)
Packt Publishing (Verlag)
35,99