Machine Learning Infrastructure and Best Practices for Software Engineers (eBook)

Take your machine learning software from a prototype to a fully fledged software system

(Autor)

eBook Download: EPUB
2024
346 Seiten
Packt Publishing (Verlag)
978-1-83763-694-5 (ISBN)

Lese- und Medienproben

Machine Learning Infrastructure and Best Practices for Software Engineers - Miroslaw Staron
Systemvoraussetzungen
32,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Although creating a machine learning pipeline or developing a working prototype of a software system from that pipeline is easy and straightforward nowadays, the journey toward a professional software system is still extensive. This book will help you get to grips with various best practices and recipes that will help software engineers transform prototype pipelines into complete software products.
The book begins by introducing the main concepts of professional software systems that leverage machine learning at their core. As you progress, you'll explore the differences between traditional, non-ML software, and machine learning software. The initial best practices will guide you in determining the type of software you need for your product. Subsequently, you will delve into algorithms, covering their selection, development, and testing before exploring the intricacies of the infrastructure for machine learning systems by defining best practices for identifying the right data source and ensuring its quality.
Towards the end, you'll address the most challenging aspect of large-scale machine learning systems - ethics. By exploring and defining best practices for assessing ethical risks and strategies for mitigation, you will conclude the book where it all began - large-scale machine learning software.


Efficiently transform your initial designs into big systems by learning the foundations of infrastructure, algorithms, and ethical considerations for modern software productsKey FeaturesLearn how to scale-up your machine learning software to a professional levelSecure the quality of your machine learning pipeline at runtimeApply your knowledge to natural languages, programming languages, and imagesBook DescriptionAlthough creating a machine learning pipeline or developing a working prototype of a software system from that pipeline is easy and straightforward nowadays, the journey toward a professional software system is still extensive. This book will help you get to grips with various best practices and recipes that will help software engineers transform prototype pipelines into complete software products. The book begins by introducing the main concepts of professional software systems that leverage machine learning at their core. As you progress, you ll explore the differences between traditional, non-ML software, and machine learning software. The initial best practices will guide you in determining the type of software you need for your product. Subsequently, you will delve into algorithms, covering their selection, development, and testing before exploring the intricacies of the infrastructure for machine learning systems by defining best practices for identifying the right data source and ensuring its quality. Towards the end, you ll address the most challenging aspect of large-scale machine learning systems ethics. By exploring and defining best practices for assessing ethical risks and strategies for mitigation, you will conclude the book where it all began large-scale machine learning software.What you will learnIdentify what the machine learning software best suits your needsWork with scalable machine learning pipelinesScale up pipelines from prototypes to fully fledged softwareChoose suitable data sources and processing methods for your productDifferentiate raw data from complex processing, noting their advantagesTrack and mitigate important ethical risks in machine learning softwareWork with testing and validation for machine learning systemsWho this book is forIf you re a machine learning engineer, this book will help you design more robust software, and understand which scaling-up challenges you need to address and why. Software engineers will benefit from best practices that will make your products robust, reliable, and innovative. Decision makers will also find lots of useful information in this book, including guidance on what to look for in a well-designed machine learning software product.]]>
Erscheint lt. Verlag 31.1.2024
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-83763-694-X / 183763694X
ISBN-13 978-1-83763-694-5 / 9781837636945
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
A roadmap to data value realization and measurable business outcomes

von PUI SHING LEE

eBook Download (2024)
Packt Publishing (Verlag)
35,99
Unlock the power of deep learning for swift and enhanced results

von Giuseppe Ciaburro

eBook Download (2024)
Packt Publishing (Verlag)
35,99
Eine praxisorientierte Einführung mit Anwendungen in Oracle, SQL …

von Edwin Schicker

eBook Download (2017)
Springer Vieweg (Verlag)
34,99