Intermolecular and Surface Forces -  Jacob N. Israelachvili

Intermolecular and Surface Forces (eBook)

eBook Download: PDF | EPUB
2010 | 3. Auflage
710 Seiten
Elsevier Science (Verlag)
978-0-08-092363-5 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
62,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This reference describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. - Starts from the basics and builds up to more complex systems - Covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels - Multidisciplinary approach: bringing together and unifying phenomena from different fields - This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)
This reference describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. - Starts from the basics and builds up to more complex systems- Covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels- Multidisciplinary approach: bringing together and unifying phenomena from different fields- This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)

Front Cover 1
IFC 2
Intermolecular and Surface Forces 5
Copyright 6
Contents 7
Preface to the Third Edition 19
Preface to Second Edition 21
Preface to the First Edition 23
Units, Symbols, Useful Quantities and Relations 25
Definitions and Glossary 31
PART I -The Forces between Atoms and Molecules 33
Chapter 1 Historical Perspective 35
1.1 The Four Forces of Nature 35
1.2 Greek and Medieval Notions of Intermolecular Forces 35
1.3 The Seventeenth Century: First Scientific Period 37
1.4 The Eighteenth Century: Confusion, Contradictions, and Controversy 39
1.5 The Nineteenth Century: Continuum versus Molecular Theories 40
1.6 Intermolecular Force-Laws and Interaction Potentials: Long- and Short-Range Forces 41
1.7 First Successful Phenomenological Theories 44
1.8 First Estimates of Molecular Sizes 47
1.9 The Twentieth Century: Understanding Simple Systems 48
1.10 Recent Trends 49
Problems and Discussion Topics 50
Chapter 2 Thermodynamic and Statistical Aspects of Intermolecular Forces 55
2.1 The Interaction of Molecules in Free Space and in a Medium 55
2.2 Self-Energy and Pair Potential 57
2.3 The Boltzmann Distribution and the Chemical Potential 58
2.4 The Distribution of Molecules and Particles in Systems at Equilibrium 59
2.5 The Van der Waals Equation of State (EOS) 62
2.6 The Criterion of the Thermal Energy kT for Gauging the Strength of an Interaction 63
2.7 Classification of Forces and Pair Potentials 66
2.8 Theoretical Analyses of Multimolecular Systems: Continuum and Molecular Approaches 67
2.9 Molecular Approaches via Computer Simulations: Monte Carlo (MC) and Molecular Dynamics (MD) 69
2.10 Newton’s Laws Applied to Two-Body Collisions 71
2.11 Kinetic and Statistical Aspects of Multiple Collisions: the Boltzmann Distribution 75
Problems and Discussion Topics 81
Chapter 3 Strong Intermolecular Forces: Covalent and Coulomb Interactions 85
3.1 Covalent or Chemical Bonding Forces 85
3.2 Physical and Chemical Bonds 86
3.3 Coulomb Forces or Charge-Charge Interactions, Gauss’s Law 87
3.4 Ionic Crystals 90
3.5 Reference States 91
3.6 Range of Electrostatic Forces 92
3.7 The Born Energy of an Ion 93
3.8 Solubility of Ions in Different Solvents 94
3.9 Specific Ion-Solvent Effects: Continuum Approach 98
3.10 Molecular Approach: Computer Simulations and Integral Equations of Many-Body Systems 99
Problems and Discussion Topics 100
Chapter 4 Interactions Involving Polar Molecules 103
4.1 What Are Polar Molecules? 103
4.2 Dipole Self-Energy 105
4.3 Ion-Dipole Interactions 105
4.4 Ions in Polar Solvents 110
4.5 Strong Ion-Dipole Interactions in Water: Hydrated Ions 110
4.6 Solvation Forces, Structural Forces, and Hydration Forces 112
4.7 Dipole-Dipole Interactions 113
4.8 Magnetic Dipoles 115
4.9 Hydrogen Bonds 115
4.10 Rotating Dipoles and Angle-Averaged Potentials 116
4.11 Entropic Effects 118
Problems and Discussion Topics 120
Chapter 5 Interactions Involving the Polarization of Molecules 123
5.1 The Polarizability of Atoms and Molecules 123
5.2 The Polarizability of Polar Molecules 125
5.3 Other Polarization Mechanisms and the Effects of Polarization on Electrostatic Interactions 126
5.4 Interactions between Ions and Uncharged Molecules 128
5.5 Ion-Solvent Molecule Interactions and the Born Energy 130
5.6 Dipole-Induced Dipole Interactions 131
5.7 Unification of Polarization Interactions 131
5.8 Solvent Effects and “Excess Polarizabilities” 132
Problems and Discussion Topics 137
Chapter 6 Van der Waals Forces 139
6.1 Origin of the Van der Waals-dispersion Force between Neutral Molecules: the London Equation 139
6.2 Strength of Dispersion Forces: Van der Waals Solids and Liquids 141
6.3 Van der Waals Equation of State 145
6.4 Gas-Liquid and Liquid-Solid Phase Transitions in 3D and 2D 147
6.5 Van der Waals Forces between Polar Molecules 149
6.6 General Theory of Van der Waals Forces between Molecules 151
6.7 Van der Waals Forces in a Medium 154
6.8 Dispersion Self-Energy of a Molecule in a Medium 158
6.9 Further Aspects of Van der Waals Forces: Anisotropy (Orientation), Nonadditivity (Many-Body), and Retardation Effects 159
Problems and Discussion Topics 162
Chapter 7 Repulsive Steric Forces, Total Intermolecular Pair Potentials, and Liquid Structure 165
7.1 Sizes of Atoms, Molecules, and Ions 165
7.2 Repulsive Potentials 168
7.3 Total Intermolecular Pair Potentials: Their Form, Magnitude, and Range 168
7.4 Role of Repulsive Forces in Noncovalently Bonded Solids 172
7.5 Packing of Molecules and Particles in Solids 174
7.6 Role of Repulsive Forces in Liquids: Liquid Structure 177
7.7 The Effect of Liquid Structure on Molecular Forces 179
Problems and Discussion Topics 180
Chapter 8 Special Interactions: Hydrogen-Bonding and Hydrophobic and Hydrophilic Interactions 183
8.1 The Unique Properties of Water 183
8.2 The Hydrogen Bond 184
8.3 Models of Water and Associated Liquids 188
8.4 Relative Strengths of Different Types of Interactions 189
8.5 The Hydrophobic Effect 190
8.6 The Hydrophobic Interaction 193
8.7 Hydrophilic Interactions 195
Problems and Discussion Topics 198
Chapter 9 Nonequilibrium and Time-Dependent Interactions 201
9.1 Time- and Rate-Dependent Interactions and Processes 201
9.2 Rate- and Time-Depended Detachment (Debonding) Forces 203
9.3 Energy Transfer (Dissipation) during Molecular Collisions: the Deborah Number 207
9.4 Energy Transfer during Cyclic Bonding-Unbonding Processes 210
9.5 Relationships between Time, Temperature, and Velocity (Rate) in Complex Processes 214
Problems and Discussion Topics 217
PART II -The Forces between Particles and Surfaces 221
Chapter 10 Unifying Concepts in Intermolecular and Interparticle Forces 223
10.1 The Association of Like Molecules or Particles in a Medium 223
10.2 Two Like Surfaces Coming Together in a Medium: Surface and Interfacial Energy 228
10.3 The Association of Unlike Molecules, Particles, or Surfaces in a Third Medium 229
10.4 Particle-Surface and Particle-Interface Interactions 230
10.5 Engulfing and Ejection 232
10.6 Adsorbed Surface Films: Wetting and Nonwetting 233
Problems and Discussion Topics 235
Chapter 11 Contrasts between Intermolecular, Interparticle, and Intersurface Forces 237
11.1 Short-Range and Long-Range Effects of a Force:Qualitative Differences in the Interactionsof Particles and Small Molecules 237
11.2 Interaction Potentials between Macroscopic Bodies 240
11.3 Effective Interaction Area of Two Spheres: the Langbein Approximation 243
11.4 Interactions of Particles Compared to Those between Atoms or Small Molecules 244
11.5 Interaction Energies and Interaction Forces: the Derjaguin Approximation 247
11.6 “Body Forces” and “Surface Forces” 252
Problems and Discussion Topics 252
Chapter 12 Force-Measuring Techniques 255
12.1 Direct and Indirect Measurements of Intermolecular, Interparticle, and Surface Forces 255
12.2 Different Direct Force-Measuring Techniques 259
12.3 Mechanics of Direct Force Measurements and Problems of Interpretation 263
12.4 Measuring Force-Distance Functions, F(D) 266
12.5 Instabilities 267
12.6 Measuring Adhesion Forces and Energies 269
12.7 Measuring Forces between Macroscopic Surfaces: the SFA, OP/OS and Related Techniques 271
12.8 Measuring Forces between Microscopic (Colloidal) and Nanoscopic Particles: AFM and TIRM Techniques 277
12.9 Measuring Single-Molecule and Single-Bond Interactions: OT and MC Techniques 280
Problems And Discussion Topics 282
Chapter 13 Van der Waals Forces between Particles and Surfaces 285
13.1 Van der Waals Force-Laws for Bodies of Different Geometries: the Hamaker Constant 285
13.2 Strength of Van der Waals Forces between Bodies in a Vacuum or Air 287
13.3 The Lifshitz Theory of Van der Waals Forces 288
13.4 Particle-Surface Interactions 291
13.5 Nonretarded Hamaker Constants Calculated on the Basis of the Lifshitz Theory 292
13.6 Van der Waals Forces between Conducting Media 293
13.7 Theoretical and Experimental Hamaker Constants for Interactions in a Vacuum or Air 295
13.8 Applications of the Lifshitz Theory to Interactions in a Medium 296
13.9 Repulsive Van der Waals Forces: Disjoining Pressure and Wetting Films 299
13.10 Van der Waals Forces at Large Separations: Retardation Effects 302
13.11 Electrostatic Screening Effects in Electrolyte Solutions 306
13.12 Combining Relations 306
13.13 Surface and Adhesion Energies 307
13.14 Surface Energies of Metals 312
13.15 Forces between Surfaces with Adsorbed Layers 313
13.16 Experiments on Van der Waals Forces 314
Problems and Discussion Topics 316
Chapter 14 Electrostatic Forces between Surfaces in Liquids 323
14.1 The Charging of Surfaces in Liquids: the Electric “Double-Layer” 323
14.2 Charged Surfaces in Water: No Added Electrolyte—“Counterions Only” 325
14.3 The Poisson-Boltzmann (PB) Equation 325
14.4 Surface Charge, Electric Field, and Counterion Concentration at a Surface: “Contact” Values 326
14.5 Counterion Concentration Profile Away from a Surface 328
14.6 Origin of the Ionic Distribution, Electric Field, Surface Potential, and Pressure 330
14.7 The Pressure between Two Charged Surfaces in Water: the Contact Value Theorem 332
14.8 Limit of Large Separations: Thick Wetting Films 335
14.9 Limit of Small Separations: Osmotic Limit and Charge Regulation 337
14.10 Charged Surfaces in Electrolyte Solutions 338
14.11 The Grahame Equation 340
14.12 Surface Charge and Potential of Isolated Surfaces 341
14.13 Effect of Divalent Ions 343
14.14 The Debye Length 344
14.15 Variation of Potential .x and Ionic Concentrations .x Away from a Surface 345
14.16 Electrostatic Double-Layer Interaction Forces and Energies between Various Particle Surfaces 346
14.17 Exact Solutions for Constant Charge and Constant Potential Interactions: Charge Regulation 350
14.18 Asymmetric Surfaces 353
14.19 Ion-Condensation and Ion-Correlation Forces 354
14.20 More Complex Systems: Finite Reservoir Systems and Finite Ion-Size Effects 357
14.21 Van der Waals and Double-Layer Forces Acting Together: the DLVO Theory 358
14.22 Experimental Measurements of Double-Layer and DLVO Forces 363
14.23 Electrokinetic Forces 366
14.24 Discrete Surface Charges and Dipoles 367
Problems and Discussion Topics 370
Chapter 15 Solvation, Structural, and Hydration Forces 373
15.1 Non-DLVO Forces 373
15.2 Molecular Ordering at Surfaces, Interfaces, and in Thin Films 374
15.3 Ordering of Spherical Molecules between Two Smooth (Unstructured) Surfaces 377
15.4 Ordering of Nonspherical Molecules between Structured Surfaces 379
15.5 Origin of Main Type of Solvation Force: the Oscillatory Force 381
15.6 Jamming 386
15.7 Experimental Measurements and Properties of Oscillatory Forces 387
15.8 Solvation Forces in Aqueous Systems: Monotonically Repulsive “Hydration” Forces 393
15.9 Solvation Forces in Aqueous Systems: Attractive “Hydrophobic” Forces 402
Problems and Discussion Topics 410
Chapter 16 Steric (Polymer-Mediated) and Thermal Fluctuation Forces 413
16.1 Diffuse Interfaces in Liquids 413
16.2 The States of Polymers in Solution and at Surfaces 413
16.3 Repulsive “Steric” or “Overlap” Forces between Polymer-Covered Surfaces 419
16.4 Interparticle Forces in Pure Polymer Liquids (Polymer Melts) 425
16.5 Attractive “Intersegment” and “Bridging” Forces 426
16.6 Attractive “Depletion” Forces 430
16.7 Polyelectrolytes 434
16.8 Nonequilibrium Aspects of Polymer Interactions 436
16.9 Thermal Fluctuations of and Forces between Fluid-Like Interfaces 437
16.10 Short-Range Protrusion Forces 438
16.11 Long-Range Undulation Forces 440
Problems And Discussion Topics 443
Chapter 17 Adhesion and Wetting Phenomena 447
17.1 Surface and Interfacial Energies 447
17.2 Adhesion Energies versus Adhesion Forces 451
17.3 Highly Curved Surfaces and Interfaces: Clusters, Cavities, and Nanoparticles 454
17.4 Contact Angles and Wetting Films 461
17.5 Wetting of Rough, Textured, and Chemically Heterogeneous Surfaces 466
17.6 Contact Angle Hysteresis 471
17.7 Adhesion of Solid Particles: the JKR and Hertz Theories 474
17.8 Adhesion Hysteresis 480
17.9 Adhesion of Rough and Textured Surfaces 484
17.10 Plastic Deformations 485
17.11 Capillary Forces 488
Problems and Discussion Topics 493
Chapter 18 Friction and Lubrication Forces 501
18.1 Origin of Friction and Lubrication Forces 501
18.2 Relationship between Adhesion and Friction Forces 507
18.3 Amontons’ Laws of (Dry) Friction 513
18.4 Smooth and Stick-Slip Sliding 514
18.5 Lubricated Sliding 517
18.6 Transitions between Liquid- and Solid-Like Films 521
18.7 The “Real” Area of Contact of Rough Surfaces 525
18.8 Rolling Friction 526
18.9 Theoretical Modeling of Friction Mechanisms 527
Problems and Discussion Topics 529
PART III -Self-Assembling Structures and Biological Systems 533
Chapter 19 Thermodynamic Principles of Self-Assembly 535
19.1 Introduction: Soft Structures 535
19.2 Fundamental Thermodynamic Equations of Self-Assembly 536
19.3 Conditions Necessary for the Formation of Aggregates 541
19.4 Effect of Dimensionality and Geometry: Rods, Discs, and Spheres 542
19.5 The Critical Micelle Concentration (CMC) 544
19.6 Infinite Aggregates (Phase Separation) versus Finite Sized Aggregates (Micellization) 545
19.7 Hydrophobic Energy of Transfer 546
19.8 Nucleation and Growth of Aggregates 547
19.9 2D Structures on Surfaces: Soluble and Insoluble Monolayers 552
19.10 Line Tension and 2D Micelles (Domains) 553
19.11 Soluble Monolayers and the Gibbs Adsorption Isotherm 556
19.12 Size Distributions of Self-Assembled Structures 556
19.13 Large and More Complex Amphiphilic Structures 559
19.14 Effects of Interactions between Aggregates: Mesophases and Multilayers 560
Problems and Discussion Topics 562
Chapter 20 Soft and Biological Structures 567
20.1 Introduction: Equilibrium Considerations of Fluid Amphiphilic Structures 567
20.2 Optimal Headgroup Area 568
20.3 Geometric Packing Considerations 570
20.4 Spherical Micelles 572
20.5 Nonspherical and Cylindrical Micelles 575
20.6 Bilayers 576
20.7 Vesicles 580
20.8 Curvature/Bending Energies and Elasticities of Monolayers and Bilayers 582
20.9 Other Amphiphilic Structures and the Transitions between Them 590
20.10 Self-Assembly on Surfaces and Interfaces: 2D Micelles, Domains, and Rafts 594
20.11 Biological Membranes 596
20.12 Membrane Lipids 596
20.13 Membrane Proteins and Membrane Structure 599
Problems And Discussion Topics 601
Chapter 21 Interactions of Biological Membranes and Structures 609
21.1 Van der Waals Forces 609
21.2 Electrostatic (Double-Layer) and DLVO Forces 611
21.3 Repulsive Entropic (Thermal Fluctuation, Steric-Hydration) Forces: Protrusion, Headgroup Overlap, and Undulation Forces 617
21.4 Attractive Depletion Forces 625
21.5 Attractive Hydrophobic Forces 627
21.6 Biospecificity: Complementary, Site-Specific and Ligand-Receptor (LR) Interactions 631
21.7 Bridging (Tethering) Forces 635
21.8 Interdependence of Intermembrane and Intramembrane Forces 637
21.9 Biomembrane Adhesion, Bioadhesion 639
21.10 Membrane Fusion 643
Problems And Discussion Topics 645
Chapter 22 Dynamic Biointeractions 649
22.1 Subtleties of Biological Forces and Interactions 649
22.2 Interactions that Evolve in Space and Time: Some General Considerations 649
22.3 Biological Rupture and Capture: The Bell and Jarzynski Equations 651
22.4 Multiple Bonds in Series and in Parallel 654
22.5 Detachment versus Capture Processes: Biological Importance of “Rare Events” 658
22.6 Dynamic Interactions between Biological Membranes and Biosurfaces 658
22.7 Self-Assembly versus Directed Assembly: Dynamic Phases and Tunable Materials 660
22.8 Motor Proteins, Transport Proteins, and Protein Engines 662
Problems And Discussion Topics 663
References 667
Index 693

Units, Symbols, Useful Quantities and Relations

Much of the published literature and equations on intermolecular and surface forces are based on the CGS system of units. In this book the Système International (SI) is used. In this system the basic units are the kilogram (kg) for mass, the meter (m) for length, the second (s) for time, the kelvin (K) for temperature, the ampére (A) for electrical quantities, and the mole (mol) for quantity of mass. Some old units such as gramme (1 gm = 1 g = 10−3 kg), centimeter (1 cm = 10−2 m), ångstrom (1 Å = 10−10 m) and degree centigrade (°C) are still commonly used, although they are not part of the SI system. The SI system has many advantages over the CGS, not least when it comes to forces. For example, force is expressed in newtons (N) without reference to the acceleration due to the earth's gravitation, which is implicit in some formulae based on the CGS system. Note that units, prefixes, words, and abbreviations are usually unitalicized—that is, in text format (e.g., J, K, m, N, volts V), whereas variables are italicized (e.g., stiffness K, mass m, number N, maximum number Nmax, velocity or volume V).

Derived SI Units

Quantity SI Unit Symbol Definition of Unit
Energy Joule J kg m2 s−2 (also Nm and CV)
Force Newton N J m−1 = kg m s−2
Power Watt W J s−1 = kg m2 s−3
Pressure Pascal Pa N m−2
Electric charge Coulomb C A s
Electric potential Volt V J A−1 s−1 = J C−1
Electric field Volt/meter   V m−1
Frequency Hertz Hz s−1
Fraction 1012 109 106 103 10−1 10−2 10−3 10−6 10−9 10−12 10−15 10−21
Prefix symbol T G M k d c m μ n p f z

Definitions of Terms and Symbols Used in the Text


a Atomic or molecular radius (m), surfactant headgroup area (m2)
a, b Constants in equations of state
a0 Bohr radius, atomic unit (a.u.) of length 0.053 nm, optimum headgroup area (m2)
A, Aijk Hamaker constant for media i and k interacting across medium j (J), area (m2), Helmholtz free energy
c Interaction constant (J m6), aqueous solute concentration in mole fraction units (mol dm−3/55.5 or M/55.5), concentration number density (m−3), volume fraction
d Distance, diameter (m)
D Distance between two surfaces (m)
Da Dalton unit of molecular weight (same as MW)
E Electric field strength (V m−1), energy (J, eV, erg)
F Force (N) or, when between two planar surfaces, force per unit area (N m−2)
G Gibbs free energy
h, H Height (m), enthalpy, hardness (Pa), hour (also hr)
I Ionization potential (J)
i
ka Area compressibility modulus (J m−2 or N m−1)
kb Bending or curvature modulus (J)
k, K Elastic modulus (N m−2), spring constant or stiffness (N m−1)
Ka Reaction constant, association constant (M−1)
Kd Dissociation constant (Kd = 1/Ka)
l, ℓ Length (m), unit segment length in polymer chain (m)
lP Persistence length of worm-like chain polymer (m)
lc Critical hydrocarbon chain length (m)
L Latent heat (J mol−1), thickness of polymer brush layer (m)
m, M Mass (kg), molarity, molar mass, molecular weight (also MW), mean aggregation number
M Concentration (mol dm−3, 103 mol m−3, moles/liter)
MW, M Molecular weight, molar mass (g mol−1), atomic mass (g), mass of atom or molecule × No, mass of atom or molecule/mass of of 12C atom, Da (if not specified, e.g., PEO 1,000, assume Da)
n, N Refractive index; number of atoms, molecules, moles, bonds, segments in a polymer chain, micelle aggregation number
p, P Pressure (N m−2)
PL, Py Laplace pressure, yield stress (Pa)
pK −log10[concentration or activity of H+ ions in M]
Q, q Charge (C)
r, R Radius (m), interatomic distance (m), atomic or molecular radius (m)
rk Kelvin radius (m)
Rg, RF Radius of gyration of polymer (m), Flory radius of polymer (m)
s Mean distance between polymer anchoring sites (m)
S Entropy, solubility
t Time (s)
T Temperature (K)
TM, TB Melting or boiling points (K or °C)
Tc, Tm Lipid chain melting temperature
u Dipole moment (C m)
U Molar cohesive energy (J mol−1), internal energy (J mol−1)
v, V Volume (m3), velocity or speed (m s−1), molar volume (m3)
w, W, W0 Interaction free energy, pair potential (J). Between two planar surfaces: Work of adhesion, cohesion or interaction free energy per unit area (J m−2)
x, y, z Position along the x-, y- or z- axis, arbitrary variables
Time derivative of variable x, for example, velocity = dx/dt (m s−1)
Acceleration, = d2x/dt2 (m s−2)
X Dimensionless concentration (e.g., mole fraction)
Y Young's modulus (N m−2)
z Valency
α Polarizability (C2 m2 J−1), interaction energy parameter (J or J m−1)
γ Surface tension (N m−1), surface energy (J m−2), tanh(o/4kT) → tanh[ψo(mV)/103] at 298 K
γi, γAB Interfacial energy (J m−2)
Γ Surface coverage, surface density, 2D density (number per m2)
δ Stern layer thickness (m), elastically or plastically deformed distance (m)
ɛ(ν) Dielectric permittivity at frequency ν
ɛ Relative permittivity, static dielectric constant at zero frequency ɛ(0), strain
Energy (J or J m−1)
θ, φ, ψ, α Angle (deg or rad),...

Erscheint lt. Verlag 2.12.2010
Sprache englisch
Themenwelt Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Chemie Technische Chemie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Technik Maschinenbau
ISBN-10 0-08-092363-1 / 0080923631
ISBN-13 978-0-08-092363-5 / 9780080923635
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 26,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 13,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Molekularbiologie und Zellbiologie

von Philip L.R. Bonner; Alan J. Hargreaves

eBook Download (2024)
Wiley-VCH (Verlag)
34,99
Molekularbiologie und Zellbiologie

von Philip L.R. Bonner; Alan J. Hargreaves

eBook Download (2024)
Wiley-VCH (Verlag)
34,99