Scanning Probe Microscopy in Nanoscience and Nanotechnology 2 (eBook)
XXVI, 816 Seiten
Springer Berlin (Verlag)
978-3-642-10497-8 (ISBN)
This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
Dr. Bharat Bhushan is an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the Professor in the College of Engineering, and the Director of the Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2) at the Ohio State University, Columbus, Ohio. He holds two M.S., a Ph.D. in mechanical engineering/mechanics, an MBA, and three semi-honorary and honorary doctorates. His research interests include fundamental studies with a focus on scanning probe techniques in the interdisciplinary areas of bio/nanotribology, bio/nanomechanics and bio/nanomaterials characterization, and applications to bio/nanotechnology and biomimetics. He has authored 6 scientific books, more than 90 handbook chapters, more than 700 scientific papers (h factor - 42+), and more than 60 scientific reports, edited more than 45 books, and holds 17 U.S. and foreign patents. He is co-editor of Springer NanoScience and Technology Series and Microsystem Technologies. He has organized various international conferences and workshops. He is the recipient of numerous prestigious awards and international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, and the Fulbright Senior Scholar Award. He is a member of various professional societies, including the International Academy of Engineering (Russia). He has previously worked for various research labs including IBM Almaden Research Center, San Jose, CA. He has held visiting professor appointments at University of California at Berkeley, University of Cambridge, UK, Technical University Vienna, Austria, University of Paris, Orsay, ETH Zurich and EPFL Lausanne.
Dr. Bharat Bhushan is an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the Professor in the College of Engineering, and the Director of the Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2) at the Ohio State University, Columbus, Ohio. He holds two M.S., a Ph.D. in mechanical engineering/mechanics, an MBA, and three semi-honorary and honorary doctorates. His research interests include fundamental studies with a focus on scanning probe techniques in the interdisciplinary areas of bio/nanotribology, bio/nanomechanics and bio/nanomaterials characterization, and applications to bio/nanotechnology and biomimetics. He has authored 6 scientific books, more than 90 handbook chapters, more than 700 scientific papers (h factor – 42+), and more than 60 scientific reports, edited more than 45 books, and holds 17 U.S. and foreign patents. He is co-editor of Springer NanoScience and Technology Series and Microsystem Technologies. He has organized various international conferences and workshops. He is the recipient of numerous prestigious awards and international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, and the Fulbright Senior Scholar Award. He is a member of various professional societies, including the International Academy of Engineering (Russia). He has previously worked for various research labs including IBM Almaden Research Center, San Jose, CA. He has held visiting professor appointments at University of California at Berkeley, University of Cambridge, UK, Technical University Vienna, Austria, University of Paris, Orsay, ETH Zurich and EPFL Lausanne.
Scanning Probe Microscopy in Nanoscience and Nanotechnology 2 3
Foreword 5
Preface 7
Contents 9
Contributors 21
Part I Scanning Probe Microscopy Techniques 27
Chapter 1 Time-Resolved Tapping-Mode Atomic Force Microscopy 28
1.1 Introduction 28
1.2 Tip–Sample Interactions in TM-AFM 30
1.2.1 Interaction Forces in TM-AFM 30
1.2.2 Cantilever Dynamics and Mechanical Bandwidth in TM-AFM 31
1.3 AFM Probes with Integrated Interferometric High Bandwidth Force Sensors 33
1.3.1 Model 34
1.3.2 Interferometric Grating Sensor 38
1.3.3 Sensor Mechanical Response & Temporal Resolution
1.3.4 Fabrication 46
1.3.5 Detection Schemes 48
1.3.6 Characterization and Calibration 51
1.3.7 Time-Resolved Force Measurements 52
1.4 Imaging Applications 55
1.4.1 Nanomechanical Material Mapping 56
1.4.2 Imaging of Molecular Structures in Self Assembled Monolayers 57
1.4.3 Imaging Microphase Seperationin Triblock Copolymer 58
1.5 Conclusion 59
References 60
Chapter 2 Small Amplitude Atomic Force Spectroscopy 63
2.1 Introduction 63
2.2 Small Amplitude Spectroscopy 66
2.2.1 Actuation Techniques 67
2.2.1.1 Sample Modulation 68
2.2.1.2 Magnetic Driving 71
2.2.1.3 Acoustic Driving 74
2.2.2 Effect Frequency Dependent Damping 77
2.3 Summary 78
References 81
Chapter 3 Combining Scanning Probe Microscopy and Transmission Electron Microscopy 83
3.1 Introduction 84
3.1.1 Why Combine SPM and TEM? 84
3.2 Some Aspects of TEM Instrumentation 86
3.3 Incorporating an STM Inside a TEM Instrument 87
3.3.1 Applications of TEMSTM 90
3.3.1.1 Electron Transport Studies 90
3.3.1.2 Field Emission 92
3.3.1.3 Electromigration 92
3.3.1.4 Joule Heating 93
3.3.1.5 Mechanical Studies 98
3.4 Incorporating an AFM Inside a TEM Instrument 99
3.4.1 Optical Force Detection Systems 100
3.4.2 Non-optical Force Detection Systems 101
3.4.3 TEMAFM Applications 104
3.4.3.1 Elastic Measurements 104
3.4.3.2 Electromechanical Properties 105
3.4.3.3 Atomic Scale Wires 106
3.4.3.4 Friction and Adhesion 107
3.5 Combined TEM and SPM Sample Preparation 108
3.5.1 Nanowires and Nanoparticles 109
3.5.2 A Proper Electrical Contact for TEMSPM 111
3.5.3 Lamella Samples 114
3.5.4 Electron Beam Irradiation Effects 114
3.6 Conclusion 116
References 117
Chapter 4 Scanning Probe Microscopy and Grazing-Incidence Small-Angle Scattering as Complementary Tools for the Investigation of Polymer Films and Surfaces 124
4.1 Introduction 124
4.2 Statistical Analysis of SPM Data 126
4.3 Introduction to Grazing-Incidence Small-Angle Scattering 132
4.4 Comparison of Real and Reciprocal Space Data 136
4.5 Complementary and In Situ Experiments 140
4.6 Combined In Situ GISAXS and SPM Measurements 150
4.7 Summary and Outlook 151
References 152
Chapter 5 Near-Field Microwave Microscopy for Nanoscienceand Nanotechnology 158
5.1 Principles of Microwave Microscope 158
5.1.1 Introduction 158
5.1.2 Near-field Interaction 159
5.1.3 Microwave Frequencies 161
5.2 Detailed Description of the Near-field Microwave Microscope 162
5.2.1 Probe-Tip for NFMM 162
5.2.2 Dipole–Dipole Interaction 163
5.2.3 Tip–sample Distance Control in NFMM 164
5.2.4 The Basic Experimental Setup of NFMM 166
5.3 Theory of Near-field Microwave Microscope 167
5.3.1 Transmission Line Theory 167
5.3.2 Perturbation Theory 169
5.3.3 Finite-Element Model 170
5.4 Electromagnetic Field Distribution 175
5.4.1 Probe-tip–fluid Interaction 175
5.4.2 Probe-tip–photosensitive Heterojunction Interaction 176
5.4.3 Probe-Tip–Ferromagnetic Thin Film, Magnetic Domain Interaction 177
5.5 Experimental Results and Images Obtained by Near-Field Microwave Microscope 179
5.5.1 NFMM Characterization of Dielectrics and Metals 179
5.5.2 NFMM Characterization of Semiconductor Thin Films 180
5.5.3 NFMM Characterization of DNA Array, SAMs, and Mixture Fluids 181
5.5.4 Biosensing of Fluids by a NFMM 183
5.5.5 NFMM Characterization of Solar Cells 185
5.5.6 NFMM Characterization of Organic FET 188
5.5.7 NFMM Characterization of Magnetic Domains 190
References 192
Chapter 6 Single Cluster AFM Manipulation: a Specialized Tool to Explore and Control Nanotribology Effects 195
6.1 Introduction 195
6.2 Manipulation and Friction Effects Explored by Dynamic AFM 197
6.2.1 Experimental Evidences 197
6.2.2 Controlled Movements 201
6.2.3 Depinning and Energy Dissipation 203
6.3 The Problem of Contact Area in Nanotribology Explored by AFM Cluster Manipulation 208
6.4 Conclusion 213
References 214
Part II Characterization 217
Chapter 7 Cell Adhesion Receptors Studied by AFM-Based Single-Molecule Force Spectroscopy 218
7.1 Introduction 219
7.2 AFM-Based Single-Molecule Force Spectroscopy 223
7.3 Receptor–Ligand Interactions 224
7.4 Cell Adhesion Interactions on Living Cells 225
7.5 Limitations of the AFM Method 233
References 234
Chapter 8 Biological Application of Fast-Scanning Atomic Force Microscopy 237
8.1 Introduction 237
8.2 Principles of Biological Fast-Scanning AFM 239
8.2.1 Hansma's Fast-Scanning AFM 239
8.2.2 Miles' Fast-Scanning AFM 239
8.2.3 Ando's Fast-Scanning AFM 240
8.3 Effects of a Scanning Probe and Mica Surface on Biological Specimens 241
8.3.1 Experimental Conditions Required for Fast-Scanning AFM Imaging 241
8.3.2 Effects of High-Speed Scanning on the Behavior of DNA in Solution 242
8.3.3 Effects of High-Speed Scanning on Protein Movement 242
8.4 Application to Biological Macromolecule Interactions 245
8.4.1 Application to Protein–Protein Interaction 245
8.4.1.1 Single-Molecule Kinetics Analyses of Chaperonin Reaction 245
8.4.1.2 Single-Molecule Morphological Analyses of Motor Proteins 248
8.4.2 Application to DNA–Protein Interaction 249
8.4.2.1 Dynamics of DNA-Targeted Enzyme Reaction 249
8.4.2.2 Dynamics of More Complex Protein–DNA Interaction 251
8.4.2.3 Nucleosome Dynamics: Sliding and Disruption 253
8.5 Mechanisms of Signal Transduction at the Single-Molecule Level 253
8.5.1 Conformational Changes of Ligand-GatedIon Channels 255
8.5.2 Conformational Changes of G-protein Coupled Receptors 255
8.5.3 Direct Visualization of Albers–Post Scheme of P-Type ATPases 256
8.6 Conclusion 258
References 258
Chapter 9 Transport Properties of Graphene with Nanoscale Lateral Resolution 267
9.1 Introduction 268
9.2 Transport Properties of Graphene 272
9.2.1 Electronic Bandstructure and Dispersion Relation 272
9.2.2 Density of States 276
9.2.3 Carrier Density 276
9.2.4 Quantum Capacitance 278
9.2.5 Transport Properties: Mobility, Electron Mean Free Path 279
9.2.5.1 Intrinsic Transport Properties 280
9.2.5.2 Transport Properties Limited by Extrinsic Scattering Mechanisms 282
9.2.5.3 Electronic Transport Close to the Dirac Point 283
9.2.5.4 Transport Far from the Dirac Point 284
9.3 Local Transport Properties of Graphene by Scanning Probe Methods 289
9.3.1 Lateral Inhomogeneity in the Carrier Density and in the Density of States 289
9.3.1.1 Scanning Single Electron Transistor Microscopy 289
9.3.1.2 Scanning Tunneling Microscopy and Spectroscopy 291
9.3.2 Nanoscale Measurements of Graphene Quantum Capacitance 293
9.3.3 Local Electron Mean Free Path and Mobility in Graphene 295
9.3.4 Local Electronic Properties of Epitaxial Graphene/4H-SiC (0001) Interface 298
9.4 Conclusion 301
References 302
Chapter 10 Magnetic Force Microscopy Studies of Magnetic Features and Nanostructures 306
10.1 Magnetic Force Microscopy 306
10.1.1 Introduction 306
10.1.2 MFM Basic Principles 307
10.1.3 MFM Image Contrast 308
10.1.4 Magnetic Imaging Resolution 309
10.2 High-Resolution MFM Tips 310
10.3 Magnetic Domains 315
10.4 Patterned Nanomagnetic Films 320
10.4.1 FIB Milled Patterns 320
10.4.1.1 FIB Milling 320
10.4.1.2 Magnetic Interactions of Ni80Fe20 Arrays 320
10.4.2 Arrays of Magnetic Dots by Direct Laser Patterning 322
10.4.2.1 Direct Laser Interference Patterning 322
10.4.2.2 In Situ MFM Imaging Under Applied Magnetic Fields 324
10.5 Template-Mediated Assembly of FePt Nanoclusters 328
10.6 Interlayer Exchange-Coupled Nanocomposite Thin Films 329
10.6.1 (Co/Pt)/NiO/(CoPt) Multilayers with Perpendicular Anisotropy 330
10.6.1.1 Introduction 330
10.6.1.2 MFM Images of Varying NiO Thickness 330
10.6.1.3 Domain Overlap 331
10.6.2 Co/Ru/Co Trilayers with In-Plane Anisotropy 332
10.7 Conclusion (Outlook) 333
References 334
Chapter 11 Semiconductors Studied by Cross-sectional Scanning Tunneling Microscopy 339
11.1 Introduction 339
11.2 Cleaving Methods and Geometries 340
11.3 Properties of Cleaved Surfaces 345
11.3.1 The (111) Surface of Silicon and Germanium 345
11.3.2 The (110) Surface of Silicon 347
11.3.3 The (110) Surface of III–V Semiconductors 347
11.3.4 The (110) Surface of II–VI Semiconductors 348
11.4 Semiconductor Bulk Properties 348
11.4.1 Ordering in Semiconductor Alloys 348
11.4.2 Phase Separation Effects 350
11.5 Low-Dimensional Semiconductor Nanostructures 350
11.5.1 Quantum Wells 351
11.5.2 Quantum Dots 355
11.6 Impurities in Semiconductors 362
11.6.1 Impurity Atoms in Silicon 363
11.6.2 Impurity Atoms in III–V and II–VI Semiconductors 364
References 367
Chapter 12 A Novel Approach for Oxide Scale Growth Characterization: Combining Etching with Atomic Force Microscopy 372
12.1 Introduction 373
12.2 Oxidation of Silicon Carbide 374
12.3 Silica: Growth and Crystallization 375
12.4 Etching 379
12.5 Scale and Interface Morphology 380
12.6 Kinetics: Details and Overall Model 388
12.7 Conclusion and Outlook 394
References 395
Chapter 13 The Scanning Probe-Based Deep Oxidation Lithography and Its Application in Studying the Spreading of Liquid n-Alkane 401
13.1 Introduction 401
13.2 Part 1. The Chemical Patterning Method for Alkane Spreading Study 402
13.2.1 Octadecyltrichlorosilane as the Substrate for Pattern Fabrication 402
13.2.2 Fabricating Hydrophilic Chemical Patterns on OTS: The Scanning Probe Deep OxidationLithography 404
13.2.2.1 The Experimental Setup 404
13.2.3 The Structure and Chemistry of the OTSpd Pattern 406
13.2.4 The Depth of the OTSpd Pattern 407
13.2.5 OTSpd Is Terminated with Carboxylic Acid Group 409
13.2.6 The Two-Step Patterning Method for Liquid Spreading Studies 411
13.2.7 The Validity of the Two-Step Patterning Approach 411
13.2.8 The Time Scale of the Heating–Freezing Cycle and the Time Scale of the Spreading 412
13.2.8.1 Feasibility of the ``Heat–Freeze'' Approach to Capture Snapshots of Spreading 412
13.2.8.2 Interference by Surface Freezing 413
13.3 Part 2. Structures of Long-Chain Alkanes on Surface 413
13.3.1 Alkane Structures on Hydrophilic Surfaces and on Hydrophobic Surfaces 414
13.3.1.1 The Alkane Tilting in the Seaweed-Shaped Alkane Layers 414
13.3.2 The Multiple Domains Within a Seaweed-Shaped Layer 417
13.4 Part 3. The Role of Vapor During the Spreadingof Liquid Alkane 419
13.4.1 The Stability of the Parallel Layer Duringthe Spreading 423
13.5 Conclusion 426
References 427
Chapter 14 Self-assembled Transition Metal Nanoparticles on Oxide Nanotemplates 430
14.1 Introduction 430
14.2 The Structure of the UT Oxide Layers 432
14.2.1 TiOx/Pt(111) 433
14.2.2 Al2O3/Ni3 Al(111) 435
14.2.3 FeO/Pt(111) 437
14.3 The Oxide Layers as Nanotemplates for Metal NPs 438
14.3.1 Au and Fe on z'-TiOx-Pt(111) 439
14.3.2 Metals on Al2O3/Ni3Al(111) 442
14.3.3 Au on FeO/Pt(111) 446
14.4 Conclusions 450
References 450
Chapter 15 Mechanical and Electrical Properties of Alkanethiol Self-Assembled Monolayers: A Conducting-Probe Atomic Force Microscopy Study 453
15.1 Introduction 453
15.2 Order, Orientation, and Surface Coverage 455
15.3 Conducting-Probe Atomic Force Microscopy 458
15.4 Theoretical Framework 463
15.4.1 Elastic Adhesive Contact 463
15.4.2 Effective Elastic Modulus of a Film–Substrate System 464
15.4.3 Electron Tunneling Through Thin Insulating Films 466
15.5 Mechanical Properties 468
15.6 Electrical Properties 472
15.7 Conclusions and Future Directions 477
References 479
Chapter 16 Assessment of Nanoadhesion and Nanofriction Properties of Formulated Cellulose-Based Biopolymers by AFM 486
16.1 Introduction 486
16.2 Application of Cellulose-Based Biopolymers in Pharmaceutical Formulations 487
16.3 General Composition of Pharmaceutical Film Coatings 488
16.3.1 Plasticizers 488
16.3.2 Surfactants and Lubricants 489
16.4 Structure and Bulk Properties of HPMC Biopolymers 490
16.4.1 Chemical Structure of HPMC 490
16.4.2 Physicochemical Properties 491
16.5 Physicochemical Properties of HPMC-Formulated Films 494
16.5.1 Materials 494
16.5.2 Pure HPMC Film Formation 495
16.5.3 Formulation of HPMC–Stearic Acid Films and HPMC–PEG Films 495
16.5.4 Thermomechanical Properties of HPMC–PEG Films 496
16.5.5 Thermo-Mechanical Properties of HPMC–SA Films 496
16.6 Surface Properties of HPMC-Formulated Films Adhesion 499
16.6.1 Surface Topography and Morphologies by AFM 499
16.6.1.1 Surface Imaging of Pure HPMC Film 499
16.6.1.2 Surface Imaging of HPMC–PEG Films 501
16.6.1.3 Surface Imaging of HPMC–SA Films 502
16.6.2 AFM Force–Distance Experiments 503
16.6.2.1 Nanoadhesion Force 505
16.6.2.2 Capillary Contribution to Nanoadhesion Force 506
16.6.3 LFM Nanofriction Experiments 509
16.6.3.1 Nano Friction Force 510
16.6.3.2 Interplay Between Nanoadhesion and Nanofriction 512
16.7 Conclusions 515
References 516
Chapter 17 Surface Growth Processes Induced by AFM Debris Production. A New Observable for Nanowear 518
17.1 Introduction 518
17.2 Single Asperity Nanowear Experiments 520
17.2.1 Surface Growth Processes Induced by AFM Tip: Experimental Results 524
17.3 A Model for Wear Debris Production in a UHV AFM Scratching Test 526
17.3.1 Localisation of the Free Energy ChangesDue to Stressing AFM Tip 527
17.3.2 Flux of Adatoms Induced by the AFM Stressing Tip 529
17.3.3 Evaluation of Number Cluster Density via Nucleation Theory 532
17.4 Continuum Approach for the Surface Growth Induced by Abrasive Adatoms 536
17.5 Conclusions and Future Perspectives 542
References 543
Chapter 18 Frictional Stick-Slip Dynamics in a Deformable Potential 545
18.1 Introduction 545
18.2 The Model and Equation of motion 547
18.2.1 Potential and geometry 547
18.2.2 Frictional Force and Static Friction as a Function of the Shape Parameter 549
18.2.3 Equation of Motion 550
18.3 Numerical Results 552
18.3.1 Phase Space and Stroboscopic Observation 552
18.3.2 Stick-Slip Phenomena 553
18.3.3 Influence of the Shape Parameter on the Transition from Stick-Slip Motion to Modulated Sliding State 556
18.4 Pure Dry Friction 557
18.5 Conclusion 560
References 560
Chapter 19 Capillary Adhesion and Nanoscale Properties of Water 562
19.1 Introduction 562
19.2 Metastable Liquid Capillary Bridges 564
19.2.1 Negative Pressure in Water 564
19.2.2 Negative Pressure in Capillary Bridges in AFM Experiments 566
19.2.3 Disjoining Pressure 568
19.2.4 Calculating Pressure in Capillary Bridges 569
19.3 Capillarity-Induced Low-Temperature Boiling 572
19.4 Room Temperature Ice in Capillary Bridges 574
19.4.1 Humidity Dependence of the Adhesion Force 574
19.4.2 Ice in the Capillary Bridges 576
19.4.3 Water Phase Behavior Near a Surfaceand in Confinement 577
19.5 Conclusions 579
References 579
Chapter 20 On the Sensitivity of the Capillary Adhesion Force to the Surface Roughness 583
20.1 Introduction 583
20.2 Capillary Force Between Rough Surfaces 585
20.2.1 Shape of the Meniscus 586
20.2.2 Capillary Force 588
20.3 Case-Study: Two-Tiered Roughness 591
20.4 Experimental Data 592
20.5 Conclusions 595
References 596
Part III Industrial Applications 597
Chapter 21 Nanoimaging, Molecular Interaction, and Nanotemplating of Human Rhinovirus 598
21.1 Introduction 598
21.2 Contact Mode AFM Imaging 599
21.3 Dynamic Force Microscopy Imaging 602
21.3.1 Magnetic AC Mode (MAC mode) AFM Imaging 603
21.4 Introduction to Molecular RecognitionForce Spectroscopy 605
21.4.1 AFM Tip Chemistry 606
21.4.2 Applications of Molecular RecognitionForce Spectroscopy 609
21.4.3 Topography and Recognition Imaging 612
21.5 Nanolithography 614
21.5.1 Applications of Nanolithography 614
21.5.1.1 Fabrication of Nanoarrays 615
21.5.1.2 Nanoshaving 616
21.5.1.3 Nanografting 618
21.5.2 Native Protein Nanolithography 620
21.6 Imaging and Force Measurements of Virus–ReceptorInteractions 621
21.6.1 Virus Particle Immobilization and Characterization 622
21.6.2 Virus–Receptor Interaction Analyzed by Molecular Recognition Force Spectroscopy 628
21.6.2.1 Theoretical Description 629
21.6.2.2 Unbinding Force Measurements of HRV2–VLDLR Interaction 630
21.6.2.3 Dynamic Force Spectroscopy 632
21.6.2.4 Kinetic On-Rate Constant Obtained from Force Measurements 633
21.6.3 Virus Immobilization on Receptor Arrays 633
21.6.3.1 Receptor Arrays for Selective and Efficient Capturing of Viral Particles 634
21.6.3.2 Atomic Force Microscopy-Derived Nanoscale Chip for Detecting Human Pathogenic Viruses 636
References 642
Chapter 22 Biomimetic Tailoring of the Surface Properties of Polymers at the Nanoscale: Medical Applications 653
22.1 Introduction 653
22.1.1 Biomimetic Material Design Criteria for Biomedical Applications 653
22.1.2 Techniques for the Characterization of Surfaces at the Nanoscale 656
22.2 Realization of Biomimetic Surfaces by Coating Strategies 661
22.2.1 Generalities 661
22.2.2 Coating Methods 663
22.2.2.1 Langmuir–Blodgett Films 663
22.2.2.2 Self-Assembled Monolayers 666
22.2.2.3 Layer-by-Layer Coating 668
22.2.2.4 Surface Biomineralization 670
22.3 Realization of Biomimetic Surfaces by Chemical Modification 672
22.3.1 Introduction of Functional Groups on Polymer Surfaces by Irradiation and Chemical Techniques 674
22.3.1.1 Plasma-Surface Modification of Polymers 674
22.3.1.2 Plasma-Grafting Polymerization 675
22.3.1.3 UV Irradiation 675
22.3.1.4 Hydrolysis and Aminolysis 676
22.3.2 Immobilization of Bioactive and BiomimeticCompounds 676
22.3.2.1 Biomimetic Surfaces by Chemical Modification 676
22.3.3 Not-Conventional Approaches Towards Nanoscale Tailoring of Biomimetic Surfaces 677
22.4 Scanning Probe Techniques for Optical and Spectroscopic Characterization of Surfacesat High Resolution 680
22.4.1 Dynamic-Mode AFM for the Characterization of Organosilane Self-Assembled Monolayers 680
22.4.2 SNOM for Fluorescence Imaging 684
22.4.3 TERS for Chemical Mapping at the Nanoscale 688
22.5 Conclusions 692
References 692
Chapter 23 Conductive Atomic-Force Microscopy Investigation of Nanostructures in Microelectronics 698
23.1 Introduction 698
23.2 Technical Implementation of C-AFM 700
23.3 C-AFM to Study Gate Dielectrics 704
23.3.1 Local Current–Voltage Characteristics, Dielectric Breakdown, and Two-Dimensional Current Maps 705
23.3.2 Investigation of High-k Dielectrics 708
23.4 Conductivity Measurements of Phase-Separated Semiconductor Nanostructures 710
23.4.1 Exploration of Supported Nanowires and Nanodots 711
23.4.1.1 C-AFM of InAs NW on GaAs(110) 711
23.4.1.2 C-AFM of InAs ND on GaAs(110) 713
23.4.2 Investigation of Defects in Ternary Semiconductor Alloys 714
23.5 C-AFM Investigations of Nanorods 716
23.6 Application of C-AFM to Electroceramics 721
23.7 Outlook to Photoconductive AFM 723
23.8 Overall Summary and Perspectives 724
References 725
Chapter 24 Microscopic Electrical Characterization of Inorganic Semiconductor-Based Solar Cell Materials and Devices Using AFM-Based Techniques 729
24.1 Introduction 729
24.2 AFM-Based Nanoelectrical Characterization Techniques 731
24.2.1 Scanning Probe Force Microscopy 731
24.2.2 Scanning Capacitance Microscopy 734
24.2.3 Conductive AFM 737
24.3 Characterization of Junctions of Solar Cells 738
24.3.1 Junction Location Determination 738
24.3.1.1 Junction Identification in Multicrystalline Si Solar Cells 739
24.3.1.2 Junction Backshift in a GaInNAs Cell 743
24.3.1.3 Junction Location in Cu(In,Ga)Se2 Cells 748
24.3.2 Electrical Potential and Field on Junctions 751
24.3.2.1 Electric Field Uniformity in a-Si:H and a-SiGe:H Cells 752
24.3.2.2 Potential Profiles in III–V Single- and Multiple-Junction Cells 756
24.4 Characterization of Grain Boundaries of Polycrystalline Materials 764
24.4.1 Carrier Depletion and Grain Misorientation on Individual Grain Boundaries of Polycrystalline Si Thin Films 765
24.4.1.1 Probing Carrier Depletion on Grain Boundaries of Polycrystalline Si Thin Films Using SCM 765
24.4.1.2 Comparison of Carrier Depletion and Grain Misorientation on Individual Grain Boundaries of PolycrystallineSi Thin Films 769
24.4.2 Electrical Potential Barrier on Grain Boundaries of Chalcopyrite Thin Films 771
24.4.2.1 Measurement of Electrical Potential on the GrainBoundaries 772
24.4.2.2 Na Impurity in the Grain Boundaries 775
24.5 Localized Structural and Electrical Propertiesof nc-Si:H and a-Si:H Thin Films and Devices 777
24.5.1 Localized Electrical Properties of a-Si:H and nc-Si:H Mixed-Phase Devices 778
24.5.1.1 Localized Photovoltage on a-Si:H and nc-Si:H Mixed-Phase Devices 778
24.5.1.2 Effects of Light-Soaking and Thermal Annealing on Local Conductivity of nc-Si:H 782
24.5.2 Doping Effects on nc-Si:H Phase Formation 785
24.5.2.1 Phosphorus and Boron Doping Effects 786
24.5.2.2 Film Growth Mechanisms 789
24.6 Summary 790
References 792
Chapter 25 Micro and Nanodevices for Thermoelectric Converters 797
25.1 Introduction 797
25.1.1 Macrodevices 798
25.1.2 Microdevices 799
25.1.3 Nanodevices and Superlattices 801
25.2 Thermoelectric Converters Models 803
25.2.1 Peltier Effect on Hot and Cold Sides 806
25.2.2 Joule Heating 807
25.3 Thin-Films Technology for Thermoelectric Materials 808
25.3.1 Bismuth and Antimony Tellurides Depositions 810
25.3.2 Optimization of Thermoelectric Properties 814
25.4 Superlattices for Fabrication of ThermoelectricConverters 815
25.4.1 Why Superlattices? 815
25.4.2 Materials and Properties 816
25.4.3 Fabrication 816
References 817
Index 819
Erscheint lt. Verlag | 17.12.2010 |
---|---|
Reihe/Serie | NanoScience and Technology | NanoScience and Technology |
Zusatzinfo | XXVI, 710 p. 200 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Biologie |
Naturwissenschaften ► Chemie | |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Maschinenbau | |
Schlagworte | BioMEMS/NEMS • Biomimetics techinques • MEMS/NEMS • Nanotechnology and nanosciences • Scanning Probe Microscopy |
ISBN-10 | 3-642-10497-5 / 3642104975 |
ISBN-13 | 978-3-642-10497-8 / 9783642104978 |
Haben Sie eine Frage zum Produkt? |
Größe: 29,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich