Stem Cell Engineering (eBook)

Principles and Applications
eBook Download: PDF
2010 | 2011
XLI, 547 Seiten
Springer Berlin (Verlag)
978-3-642-11865-4 (ISBN)

Lese- und Medienproben

Stem Cell Engineering -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The potential of stem cells for healing and disease prevention in all fields of medicine is tremendous and has revolutionized the high-tech biomedical research. In this book, many of the most prominent researchers discuss the challenging topics of stem cell engineering, for example: Ethical issues of stem cell research; technological challenges, stem cell growth and differentiation, therapeutic applications, bioreactors and bioprocesses, high throughput and microfluidic screening platforms, stem cell identification and sorting, intercellular signaling and engineered niches, novel approaches for embryonic and adult stem cell growth and differentiation, stem cells and drug discovery, screening platforms. Stem Cell Engineering offers valuable background and reference for both the public and professionals including industrial staffers, faculty, researchers, engineers, students and scientific journalists.

About the Authors 5
Contents 30
Contributors 33
Editorial Board 38
Part I Instead of an Introduction The Emperors New Legs 39
The Emperors New Body: Seeking for a Blueprint of Limb Regeneration in Humans 40
1 Introduction: A Dream of Regeneration 41
2 Biological Aspects of Regeneration 45
3 Regeneration Mechanisms: From the Hydra to a Human Being 47
3.1 Morphallactic Regeneration 48
3.2 Epimorphic Regeneration 49
3.3 Regeneration by Induction 52
4 Regeneration in Nonregenerators 52
5 Regeneration as Redevelopment 55
6 Blastema Formation Versus Scarring 59
7 Spatial Patterning of Morphogenesis 63
8 Limb Tissue Differentiation 68
References 70
Part II Basics and Basic Research 75
Engineering the Stem Cell Niche and the Differentiative Micro- and Macroenvironment: Technologies and Tools for Applying Biochemical, Physical and Structural Stimuli and Their Effects on Stem Cells 76
1 Introduction 77
2 The Micro- and Macroenvironment 79
3 Time 81
4 Biochemical Microenvironment 81
5 Physico-chemical and Mechano-structural Axes The Macroenvironment 83
6 Physico-chemical Factors 84
7 Mechano-structural Microenvironment 86
8 Putting It All Together Making Space for Engineers in Biology 89
9 Conclusion 90
References 91
Differentiation Potential of Adult Human Mesenchymal Stem Cells 95
1 Introduction 96
2 The Source of Mesenchymal Stem Cells 97
3 The Isolation of Mesenchymal Stem Cells 98
4 The Differentiation of Mesenchymal Stem Cells 100
5 Biomaterials for Three-Dimensional Scaffolds 103
6 Biocompatibility of Scaffold Materials 104
7 Future Aspects 109
References 110
The Potential of Selectively Cultured Adult Stem Cells Re-implanted in Tissues 112
1 Introduction 113
2 AdultStem Cells in Cancer 114
3 Isolation and Characterization Methods of AdultStem Cells 117
4 Effects of AdultStem Cell Re-implantation into Tissues 123
5 The Dorsal Mouse-Skinfold Window Chamber Method in Stem Cell Research 127
6 Potential Applications of AdultStem Cells in the Future 137
References 143
Enhanced Cardiac Differentiation of Mouse Embryonic Stem Cells by Electrical Stimulation 151
1 Introduction 152
2 Common Routes Toward Cardiac Differentiation of mES Cells 154
3 Electric Stimulation of mES Cell 157
4 Functionality of mES Cell-Derived Cardiomyocytes 163
5 Discussion and Outlook 166
References 169
The Therapeutic Potential of ES-Derived Haematopoietic Cells 174
1 Introduction 174
2 Pluripotent Cells 175
3 Production of Haematopoietic Cells from ES Cells 175
3.1Defining the Stages of Haematopoiesis In Vitro 176
3.2 Derivation of Transplantable ES--HSCs 178
3.3 Derivation of Mature Haematopoietic Cells from ES Cells 179
3.3.1 Macrophages 180
3.3.2 Dendritic Cells 180
3.3.3 Neutrophils 180
3.3.4 Red Blood Cells 181
4 Bioengineering and Processing 182
5 Concluding Remarks 182
References 183
Genetic Modification of Human Embryonic and Induced Pluripotent Stem Cells: Viral and Non-viral Approaches 190
1 Introduction 190
1.1 Non-viral Delivery Systems 191
1.2 Viral Delivery Systems 194
2 Adenovirus 194
3 Integrating Vectors for Stem Cell Research The Use of Retroviruses and Lentiviruses in Stem Cell Genetic Modification 197
4 Induced Pluripotent Stem Cells: Gene Delivery Methods for Reprogramming Somatic Cells 199
5 Conclusions 205
References 206
The Immune Barriers of Cell Therapy with Allogenic Stem Cells of Embryonic Origin 211
1 Introduction 212
2 Stem Cells Overview 212
2.1 Embryonic Stem Cells 214
2.2 Adult Stem Cells 214
3 Induced Pluripotent Stem Cells Derived from Adult Somatic Cells 216
4 Immune Barriers and Mechanism of Rejection 216
5 Effector Cells of the Immune Response 219
6 How to Monitor the Immune Response Against ESC 220
7 Immunogenicity of Undifferentiated ESC 221
8 Immunogenicity of Differentiated Cells Derived In Vitro from ESC 222
9 Therapeutical Approach to Overcome the Immune Barriers 223
10 Conclusion 224
References 225
Reponses of Mesenchymal Stem Cells to Varying Oxygen Availability In Vitro and In Vivo 228
1 Introduction 228
2 Normoxic Conditions 230
2.1 MSC at Varying Oxygen Levels In Vivo 230
2.2 Regulation of O2in Cell Culture 231
2.3 MSC at Varying O2Levels In Vitro 232
3 Iatrogen-Induced Dysoxygenation 234
3.1 Irradiation-Induced Changes of Bone Anatomy 234
3.2 Irradiation-Induced Alteration of MSC Properties 235
4 Conclusions 237
References 238
Endothelial Progenitor Cells and Nitric Oxide: Matching Partners in Biomedicine 241
1 The Role of Endothelial Progenitor Cells In Vivo 243
1.1 Neovascularization 243
1.2 Endothelial Progenitor Cells 243
1.3 Mobilization of Endothelial Progenitor Cells 245
1.4 Homing of Endothelial Progenitor Cells 246
2 In Vitro Testing of EPC and Its Use in Clinical Studies 247
2.1 Methods of In Vitro Testing 248
Cell Number 248
Cell Culture 248
Proliferation 248
Colony-Forming Units 249
Survival 250
Migration 250
Adhesion 251
Matrigel Assay 251
2.2 Testing the Endothelial Progenitor Cell Number and Function for Risk Stratification in Patients 251
3 In Vivo Testing of Endothelial Progenitor Cells 252
3.1 Animal Studies and the Relevance of Endothelial Progenitor Cells in Neovascularization 253
3.2 Human Studies and the Potential Role of EPCs as a Therapeutic Target 254
3.3 How Do EPCs Act? 256
4 A Short Survey of Nitric Oxide and Its General Effects 257
NO as a 'Second Messenger Molecule' 257
NO Determines Vascular Function 258
4.1 The Enzymatic Source of Nitric Oxide in Mammals 258
NOS Isoforms and Cofactors 258
'Dysregulation' of NO Synthase in Disease 259
4.2 NO Synthase-Independent Pathways of NO 260
4.3 The Role of Nitric Oxide in Cell Viability 260
5 Nitric Oxide and Endothelial Progenitor Cells 261
5.1 A Nitric Oxide Synthase in Endothelial Progenitor Cells 261
5.2 EPCs and NO In Vitro and In Vivo 262
Human Nitric Oxide-Mediated Cardiovascular Diseases and EPCs 263
6 Bioengineering in EPC Research 264
6.1 Optimized Cell Sorting 265
6.2 Optimal Culture Conditions 265
6.3 Enhancement of EPC Properties 265
6.4 Pinpoint Application of Endothelial Progenitor Cells In Vivo 266
6.5 Local Enrichment of Endothelial Progenitor Cells In Vivo 267
References 267
Skeletal Stem Cells and Controlled Nanotopography 274
1 Introduction 274
2 Skeletal or Mesenchymal Stem Cells 275
3 Cell Filopodia 276
4 Cell Cytoskeleton and Cellular Adhesions 277
5 Mechanotransduction 278
6 Differentiation 280
7 Summary 281
References 282
Part III Clinical Applications 286
Cells and Vascular Tissue Engineering 287
1 Introduction 287
1.1 Components of a Blood Vessel 289
2 Methodology for Producing Vascular Grafts 289
2.1 Natural Protein-Based Grafts 290
2.2 Decellularized Vessels 291
2.3 Cell-Assembled Vascular Grafts 292
2.4 Biodegradable Synthetic Vascular Grafts 292
2.5 Combined Natural and Synthetic Vascular Grafts 293
2.6 Bioreactors 293
3 Stem Cell Sources for Tissue-Engineered Vessels 293
3.1 Adult Stem Cells 294
3.2 Mesenchymal Stem Cells 294
3.2.1 Mesenchymal Stem Cell Differentiation into Vascular Cells 296
3.2.2 Tissue-Engineering Models Using Mesenchymal Stem Cells 298
3.3 Haematopoietic Stem Cells 299
3.3.1 Haematopoietic Stem Cell Differentiation into Vascular Lineages 299
3.4 Endothelial Progenitor Cells 300
3.4.1 EPC Differentiation into Mature ECs 301
3.4.2 Tissue-Engineering Models Using EPCs 301
3.5 Very Small Embryonic-Like Stem Cells 302
3.6 Embryonic Stem Cells 303
3.6.1 Embryonic Stem Cell Differentiation into a Vascular Lineage 303
3.6.2 Tissue-Engineering Models Using Embryonic Stem Cells 305
3.7 Induced Pluripotent Stem )iPS) Cells 307
3.7.1 Advances in Murine iPS Cell Biology 307
3.7.2 Human iPS Cell Biology 309
3.7.3 iPS Cell Differentiation into a Vascular Lineage 311
4 Summary and Future Directions 312
References 313
Endothelial Progenitor Cells for Vascular Repair 322
1 Introduction 322
1.1 Problem 322
2 Artery Structure and Function of Endothelial Cells 324
3 Endothelial Cell Seeding of Vascular Grafts 326
4 Culture and Characterization of EPCs 327
4.1 Methods of EPC Isolation and Culture 327
4.2 Characterization of CFU-ECs and ECFCs 329
4.3 Challenges to the Use of EPCs 331
4.4 Other Sources of ECs or EPCs 333
5 Applications 334
5.1 Adhesion of EPCs to the Vessel Wall or Graft Surface 334
5.2 EPCs and Atherosclerosis 335
5.3 Potential Therapeutic Applications 336
5.4 Future Studies and Applications 337
References 338
Regenerating Tubules for Kidney Repair 346
1 Promoting Regeneration in Kidney 347
2 Viewing Renal Stem/Progenitor Cell Niches 348
3 Telling Stem/Progenitor Cells to Form Structured Tubules 349
4 Registering Development of Epithelial Stem/Progenitor Cells 350
5 Isolating Renal Stem/Progenitor Cell Containing Tissue 351
6 Engineering a Micro-environment for Structural Development 352
7 Offering a Suitable Bioreactor Housing 353
8 Providing Always Fresh Culture Medium 354
9 Visualizing Pattern of Generated Tubules 355
10 Scanning the Interface of an Artificial Interstitium 356
11 Linking Collagen Between Tubules and Polyester Fibers 357
12 Looking to the Ultrastructure of Generated Tubules 358
13 Featuring Cell Differentiation 359
14 Inducing Tubulogenic Development 361
15 Scoring the Development of Tubules 362
16 Specifying the Morphogenic Action of Aldosterone 363
17 Antagonizing the Tubulogenic Signal on MR 364
18 Interfering the Tubulogenic Signaling in the Cytoplasm 366
19 Producing Renal Superstructures 367
20 Summing Up 368
References 369
Stem Cells in Tissue Engineering and Cell Therapies of Urological Defects 370
1 Introduction 371
2 Stem Cells 372
2.1 Stem Cell Populations 372
2.2 Embryonic Stem and Germ Cells 373
2.3 Adult Stem Cells 374
3 Stem Cells in Urology 375
3.1 Urinary Tract Tissue 375
3.2 Renal Tissue 377
3.3 Gonadal Tissue 380
3.4 Sphincter Muscle Tissue 381
4 Challenges and Risks 382
References 383
Bio-synthetic Encapsulation Systems for Organ Engineering: Focus on Diabetes 388
1 Introduction 388
2 Cell-Based Therapies for Diabetes 389
2.1 Whole Organ Transplants 390
2.2 Cell-Based Gene Therapy 390
2.3 Cell Transplantation Therapy 391
3 Cell Types and Sources 392
3.1 Xenogeneic Cell Sources 393
3.2 Allogeneic Cell Sources 394
3.3 Embryonic Stem Cells 395
3.4 Adult Stem Cells 396
4 Design Requirements for Encapsulation Systems 397
4.1 Physical and Chemical Material/Device Properties 397
4.2 Barrier Properties 399
4.3 Biological Matrix Incorporation 400
5 Challenges in Encapsulation of Stem Cells 401
6 Conclusions 402
References 402
Stem Cell Engineering for Regeneration of Bone Tissue 407
1 Introduction 408
2 Osteogenic Differentiation of Human Mesenchymal Stem Cells 409
3 Response of Osteogenically Induced hMSC to Biomimetic Mineralised Collagen Scaffolds 412
4 Cocultivation of hMSC and Osteoclast-Like Cells on Synthetic Extracellular Matrices as In Vitro Model for Bone Remodelling 414
5 Chemoattraction of hMSC into Porous 3D Scaffolds: A Novel Possibility for Accelerated Bone Defect Healing 417
6 Conclusions 419
References 420
Part IV Techniques and Applications 424
Building, Preserving, and Applying Extracellular Culture Integrity Using New Cell Culture Methods and Surfaces 425
1 Introduction 426
2 Cultureware Surfaces and Extracellular Culture Integrity 427
3 Building Culture Integrity 427
4 Preserving Culture Integrity 429
5 Applying Culture Integrity 431
6 Summary 434
References 435
Fabrication of Modified Extracellular Matrixfor the Bone Marrow-Derived Mesenchymal Stem Cell Therapeutics 438
1 Issues in Cell Production for the Cell-Based Therapeutics 438
2 Issues in Extracellular Substances for Production of Cell-Based Therapeutics 440
3 Characteristics of ECM Components 442
3.1 Application of Acellular Matrix 445
3.1.1 For Cartilage 445
3.1.2 For Esophagus 446
3.2 Application of ECM 448
3.2.1 Collagen Encapsulation of MSC for Cell Therapy 448
3.2.2 Collagen Matrix for Multicellular Structural Implants 449
4 Summary 453
References 454
Neural Stem Cells: From Cell Fate and Metabolic Monitoring Toward Clinical Applications 456
1 Stem Cell Differentiation and Fate Specification 457
2 Microphysiometer Systems 461
3 Toward Clinical Applications 465
4 Summary 470
References 471
Adult Stem Cells in Drug Discovery 477
1 Drug Discovery 477
2 Target Identification 478
2.1 Microarray Analysis 479
2.2 TaqMan Analysis 480
3 Target Validation 481
3.1 In Vitro Target Validation 482
3.1.1 RNAi Technology 482
3.1.2 Cell Biology 482
3.2 In Vivo Target Validation 482
3.2.1 Knockout 483
3.2.2 Animal Models 483
3.3 Screening 485
3.4 Lead Structure Optimization 486
4 Adult Stem Cells in Hematological Diseases 486
5 Adult Stem Cells in Cancer 487
6 Adult Stem Cells in Cardiovascular Diseases 488
6.1 Myocardial Infarction 488
6.2 Heart Failure 489
6.3 PAOD 489
7 Adult Stem Cells in Drug Discovery 490
References 491
Embryonic Stem Cells as a Tool for Drug Screening and Toxicity Testing 492
1 Conventional Methods in Drug Screening and Toxicity Testing 492
1.1 In Vivo Methods 493
1.2 In Vitro Methods 494
1.2.1 Limitations of State-of-the-Art In Vitro Systems 495
2 Embryonic Stem Cells as a Tool for In Vitro Test Systems 496
2.1 Definition of ESCs 497
2.2 Cultivation of ESCs 499
2.3 Present Use of ESC 501
2.3.1 Example 1: Use of ESCs for Basic Research of Early Developmental Biology 501
2.3.2 Example 2: The Embryonic Stem Cell Test )EST) for Embryotoxicity 503
2.3.3 Example 3: Use of ES Cell-Derived Cardiomyocytes for Detection of Cardiac Toxicity 506
3 Outlook: Potential Advanced In Vitro Models 509
3.1 Use of Human ESCs 509
3.2 Generation of Personalized Induced Pluripotent Cells )IPS Cells) 511
3.3 Personalized Medicine 512
4 Conclusion 513
References 513
Embryonic Stem Cells: A Biological Tool to Translate the Mechanisms of Heart Development 520
1 Heart Development: An Overview of Morphogenesis 521
2 Model Organisms to Study Heart Development 522
2.1 Drosophila 522
2.2 Zebrafish 522
2.3 Mouse 523
3 Lingering Questions About Heart Development 523
4 The In Vitro Differentiation of Embryonic Stem Cells into Cardiomyocytes Recapitulates the Early Stages of In Vivo Embryonic Heart Development 524
5 ES Cell Differentiation as a Model for Cardiac Fate Mapping 525
6 Embryonic Stem Cell Differentiation to Elucidate the Molecular Cues Guiding the Specification of Mammalian Cardiac Progenitor Cells 526
6.1 Activin, TGF 1, and Nodal Secreted by the Primitive Endoderm Guide Epiblast Cells into the Mesendodermal Fate 527
6.2 BMPs and Wnts Play Stage-Specific Roles in Cardiogenesis 528
6.3 FGFs Potentiate the Actions of Wnt and BMP Signals During Cardiogenesis 530
6.4 Cardiac Crescent Expressed Transcription Factors Do Not Induce the Cardiac Specification During Mammalian Heart Development 530
6.5 Mesp1 May Be the Cardiac Specification Factor 532
7 Limitations of the Cultured Embryonic Stem Cells as a Model for Heart Development 533
8 Conclusions and Future Directions 534
References 534
Index 540

Erscheint lt. Verlag 29.10.2010
Zusatzinfo XLI, 547 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie
Technik
Schlagworte bioreactors • Cell expansion • Differentiation • drug discovery • embryonic stem cell growth • stem cell growth
ISBN-10 3-642-11865-8 / 3642118658
ISBN-13 978-3-642-11865-4 / 9783642118654
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
64,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
64,99
Skript 7 Enzyme; Vitamine; Organstoffwechsel; Molekularbiologie

von Endspurt Vorklinik

eBook Download (2023)
Georg Thieme Verlag KG
22,99