Foundational Theories of Classical and Constructive Mathematics
Introduction : Giovanni Sommaruga
Part I: Senses of ‚foundations of mathematics’
Bob Hale, The Problem of Mathematical Objects
Goeffrey Hellman, Foundational Frameworks
Penelope Maddy, Set Theory as a Foundation
Stewart Shapiro, Foundations, Foundationalism, and Category Theory.- Part II: Foundations of classical mathematics
Steve Awodey, From Sets to Types, to Categories, to Sets
Solomon Feferman, Enriched Stratified Systems for the Foundations of Category TheoryColin McLarty, Recent Debate over Categorical Foundations.- Part III: Between foundations of classical and foundations of constructive mathematics
John Bell, The Axiom of Choice in the Foundations of Mathematics
Jim Lambek and Phil Scott, Reflections on a Categorical Foundations of Mathematics.- Part IV: Foundations of constructive mathematics
Peter Aczel, Local Constructive Set Theory and Inductive Definitions
David McCarty, Proofs and Constructions
John Mayberry, Euclidean Arithmetic: The Finitary Theory of Finite Sets, Paul Taylor, Foundations for Computable Topology
Richard Tieszen, Intentionality, Intuition, and Proof in Mathematics.
Erscheint lt. Verlag | 26.3.2011 |
---|---|
Reihe/Serie | The Western Ontario Series in Philosophy of Science ; 76 |
Zusatzinfo | XII, 316 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Geisteswissenschaften ► Philosophie ► Allgemeines / Lexika |
Geisteswissenschaften ► Philosophie ► Logik | |
Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika | |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Naturwissenschaften | |
ISBN-10 | 94-007-0430-5 / 9400704305 |
ISBN-13 | 978-94-007-0430-5 / 9789400704305 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich