Pediatric and Neonatal Mechanical Ventilation (eBook)

From Basics to Clinical Practice

Peter C. Rimensberger (Herausgeber)

eBook Download: PDF
2014 | 1. Auflage
X, 1584 Seiten
Springer-Verlag
978-3-642-01219-8 (ISBN)

Lese- und Medienproben

Pediatric and Neonatal Mechanical Ventilation -
Systemvoraussetzungen
234,33 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Written by outstanding authorities from all over the world, this comprehensive new textbook on pediatric and neonatal ventilation puts the focus on the effective delivery of respiratory support to children, infants and newborns. In the early chapters, developmental issues concerning the respiratory system are considered, physiological and mechanical principles are introduced and airway management and conventional and alternative ventilation techniques are discussed. Thereafter, the rational use of mechanical ventilation in various pediatric and neonatal pathologies is explained, with the emphasis on a practical step-by-step approach. Respiratory monitoring and safety issues in ventilated patients are considered in detail, and many other topics of interest to the bedside clinician are covered, including the ethics of withdrawal of respiratory support and educational issues. Throughout, the text is complemented by numerous illustrations and key information is clearly summarized in tables and lists.

Contents 6
Part I: Basics of Respiratory Physiology and Mechanics in the Neonate and the Growing Child 12
1: Development of the Respiratory System (Including the Preterm Infant) 13
1.1 Prenatal Development 13
1.1.1 Embryonic and Fetal Development of the Airways 13
1.1.2 Branching Morphogenesis 14
1.1.3 Differentiation of the Conducting Airway Epithelium 16
1.1.4 The Establishment of the Air-Blood Interface 17
1.1.5 Development of the Embryonic and Fetal Pulmonary Vascular System 18
1.1.5.1 The Extrapulmonary Vessels 18
1.1.5.2 The Intrapulmonary Vessels and Microcirculation 18
1.2 Postnatal Lung Development 20
1.2.1 Postnatal Lung Development: Alveolarization 20
1.2.2 The Formation of the Alveoli 21
1.2.3 The Regulation of Secondary Septation 22
1.2.3.1 ECM 23
1.2.3.2 Growth Factors 24
1.2.3.3 Transcription Factors 25
1.2.3.4 Retinoic Acid and Glucocorticoids 25
1.2.4 The Pulmonary Vascular System in Alveolar Development 26
1.2.5 Regulation of Postnatal Vascular Growth 28
References 29
2: The Neonatal Neuromechanical Unit: Generalities of Operation 36
2.1 Generalities 36
2.2 Neural Output 37
2.3 Translation of Muscle Contraction into Pulmonary Ventilation 38
2.3.1 Step 1. Force Generation 38
2.3.2 Step 2. Pressure Generation 39
2.3.3 Step 3. Lung and Chest Wall Mechanics 40
2.4 Mechanical Constraints and Breathing Pattern 41
2.4.1 Chest Wall Distortion 41
2.4.2 Low Resting Volume: Problems and Solutions 42
2.5 Feedback Regulation 43
2.5.1 Vagal Feedback 44
2.5.2 Extrapulmonary Ventilatory Reflexes 45
2.5.3 Chemical Feedback 45
2.5.3.1 Hypoxia 46
2.5.3.2 Hypercapnia 47
Conclusions 47
References 48
3: Basics of Gas Exchange 52
3.1 Pulmonary Gas Exchange 52
3.2 Alveolar Ventilation and Alveolar PO2 52
3.3 Intrapulmonary Shunt 54
3.4 Dead Space 56
3.5 Blood-Gas Equilibrium 56
3.6 Tissue Oxygenation 58
3.7 Metabolic Rate 59
3.8 Interpretation of Arterial and Venous Blood Gases 60
References 62
4: The Respiratory System 64
4.1 Physiology of the Upper Airway and Control in Breathing 64
4.1.1 Introduction: Breathing and the Upper Airway 65
4.1.2 Nasal Functions in Breathing 65
4.1.2.1 Air Conditioning and Vascularity 65
4.1.2.2 Nasal Reflexes and Protection 65
4.1.2.3 Nasal Patency and Resistance 65
4.1.3 Oral Cavity and Pharyngeal Functions in Breathing 67
4.1.3.1 Oral Cavity and Pharyngeal Patencies and Obstructive Apnea 67
4.1.3.2 Sucking, Nutritive Swallowing, and Breathing 68
4.1.3.3 Nonnutritive Swallowing, Aspiration, and Swallow Breaths 69
4.1.4 Laryngeal Functions in Breathing and Control in Breathing 69
4.1.4.1 Laryngeal Opening and Closure in Airway Protection and Breathing 70
4.1.4.1.1 Laryngeal Closure and Airway Protection 70
4.1.4.1.2 Eupnea: Glottic Aperture Size and Flow/Volume Control 70
4.1.4.1.3 Integrative Central Control and Effects 70
4.1.4.2 Laryngeal Intrinsic Muscles and Control in Breathing 71
4.1.4.2.1 Laryngeal Intrinsic Muscles in Eupnea and Grunting 71
4.1.4.3 Laryngeal and Pump Muscle Breathing Patterns in the Fetus and Newborn 73
4.1.5 Control of Coordinated Laryngeal and Pump Muscle Activities 73
4.1.5.1 Laryngeal Protective, Lower Airway and Chest Wall Afferents 73
4.1.5.2 Central and Chemical Control 75
Conclusion 76
4.2 Mechanics of the Lung, Airways, and the Chest Wall 77
4.2.1 Background 77
4.2.1.1 Passive Tests of Respiratory Mechanics 77
4.2.1.2 Dynamic Tests of Respiratory Mechanics 78
4.2.2 Developmental Considerations 79
4.2.2.1 Airway and Lung Development 79
4.2.2.1.1 Dysanapsis 80
4.2.2.2 Sex Differences in Respiratory Mechanics 80
4.2.2.3 Periconceptional and Intrauterine Exposures 81
4.2.3 Mechanical Properties of the Airways, Lung, and Chest Wall in Infancy and Childhood 81
4.2.3.1 The Airways 81
4.2.3.2 The Lungs 83
4.2.3.3 The Chest Wall and Respiratory Musculature 83
4.2.3.4 Summary 85
4.3 Respiratory Mechanics in Neonatal Pathologies 86
4.3.1 Acute Neonatal Lung Disease 86
4.3.1.1 Transient Tachypnea of the Newborn 86
4.3.1.2 Respiratory Distress Syndrome 87
4.3.1.3 Meconium Aspiration Syndrome 89
4.3.1.4 Persistent Pulmonary Hypertension of the Newborn 89
4.3.1.5 Congenital Diaphragmatic Hernia 90
4.3.2 Chronic Neonatal Lung Disease 91
4.3.2.1 Bronchopulmonary Dysplasia 91
4.3.2.2 Bronchial Hyperresponsiveness 93
4.4 Respiratory Mechanics in Pediatric Diseases 94
4.4.1 Restrictive Lung Disease 94
4.4.1.1 Restrictive Ventilatory Defect of Pulmonary Origin 94
4.4.1.1.1 Chronic ILD 94
4.4.1.1.2 ALI/ARDS 96
4.4.1.1.2.1 Acute Phase 96
4.4.1.1.2.2 Long-Term Sequelae 96
4.4.1.2 Restrictive Defect Arising in the Chest Wall 97
4.4.1.2.1 Obesity 97
4.4.1.2.2 Scoliosis 98
4.4.1.2.2.1 Neuromuscular Scoliosis 98
4.4.2 Obstructive Lung Disease 99
4.4.2.1 Childhood Asthma and Wheezing Disorders 99
4.4.2.1.1 Forced Expiratory Volumes (FEV) and F/V Curves 99
4.4.2.1.2 Lung V 100
4.4.2.1.3 R Measurement in Preschool Children 100
4.4.2.2 Cystic Fibrosis (CF) 101
4.4.2.2.1 FEVs and FEFs 101
4.4.2.2.2 Lung V Measurements and Other Techniques Detecting Small Airway Obstruction 101
4.4.2.2.3 Obstructive Ventilatory Defect 102
4.4.2.2.4 Restrictive Ventilatory Defect 102
4.4.2.3 Long-Term Sequelae of Neonatal Lung Disease and Chronic Lung Disease of Infancy (CLD) 103
4.4.2.3.1 In the First Months of Life 103
4.4.2.3.2 During Infancy and Early Childhood 103
4.4.2.3.3 School-Age Children 103
4.4.2.4 Obstructive Airway Disease Following Hematopoietic Stem Cell Transplantation: Bronchiolitis Obliterans (BO) 104
4.4.3 Neuromuscular Disease (NMD) 104
4.4.3.1 Lung V 105
4.4.3.2 F/V Curves 106
4.4.3.3 Respiratory P 106
References 109
Part II: Basics of Respiratory Support and Mechanical Ventilation 122
5: Neonatal Intubation (Specific Considerations) 123
5.1 Introduction 123
5.2 Physiological Effects 123
5.2.1 Hemodynamic Changes 123
5.2.1.1 Heart Rate 123
5.2.1.2 Arterial Blood Pressure 124
5.2.2 Respiratory Changes 124
5.2.3 Neurological Effects 124
5.2.3.1 Intracranial Pressure 124
5.2.3.2 Pain 125
5.3 Specific Difficulties and Complications of Neonatal Intubation 125
5.3.1 Neonatal Upper Airways 125
5.3.2 Indications for Intubation 125
5.3.3 Complications of Neonatal Intubation 125
5.4 Recommendations for Clinical Practice 126
5.4.1 Technical Preparation 126
5.4.2 Intubation Route 126
5.4.3 Premedication Use 127
5.4.4 Tube Positioning 127
5.4.4.1 Intratracheal Position 127
5.4.4.2 Tube Length 127
Conclusion 127
References 128
6: Oxygen Supplementation, Delivery, and Physiologic Effects 130
6.1 Introduction 130
6.2 Oxygen Delivery Systems 131
6.2.1 Low-Flow Devices 131
6.2.1.1 Nasal Cannulae 131
6.2.1.2 Simple Face Mask 131
6.2.1.3 Venturi Face Mask or Tracheostomy Collar 131
6.2.2 High-Flow Devices 131
6.2.2.1 High-Flow Nasal Cannulae 131
6.2.2.2 Non-rebreather Face Masks 131
6.2.2.3 Partial Rebreather Face Masks 132
6.2.2.4 Oxyhood 132
6.2.2.5 Noninvasive Ventilation (NIV) 132
6.2.2.6 Oxygen Delivery via Invasive Mechanical Ventilation 132
6.2.2.7 Hyperbaric Oxygen 132
6.3 Physiologic Effects of Oxygen Breathing 132
6.3.1 Respiratory Effects 132
6.3.1.1 Breathing Control 132
6.3.1.1.1 Sensors 132
6.3.1.1.2 Central Control 133
6.3.1.1.3 Effectors (Respiratory Muscles) 133
6.3.1.1.4 Special Considerations for Infants 134
6.3.1.2 Pulmonary Vasodilatation 134
6.3.1.2.1 Specific Therapies to Decrease PVR 134
6.3.1.3 Absorption Atelectasis 136
6.3.1.4 Pulmonary Oxygen Toxicity 136
6.3.2 Non-respiratory Effects of Oxygen 137
6.3.2.1 Hemodynamic Effects 137
6.3.2.1.1 Response to Oxygen 138
6.3.2.2 Oxygen Consumption 138
6.3.2.3 Retinopathy of the Prematurely Born Infant (ROP) 138
6.3.2.3.1 Pathophysiology 138
6.3.2.3.2 Risk Factors 139
6.3.2.3.3 Screening Guidelines 139
6.3.2.3.4 Current Treatments 139
6.3.3 Hyperbaric Oxygen Therapy (HBO) 139
6.3.3.1 CO Poisoning 140
6.3.3.2 Wound Healing 140
6.3.3.3 Air Emboli 140
6.3.3.4 Toxicity/Complications 140
References 141
7: Nasal CPAP: An Evidence-Based Assessment 142
7.1 History of NCPAP 142
7.2 Description of NCPAP Devices 143
7.2.1 Continuous Flow 143
7.2.2 Variable Flow 144
7.2.3 Bi-level CPAP 145
7.2.4 Nasal Intermittent Positive Pressure Ventilation (NIPPV) 145
7.3 Assessing the NCPAP Data 145
7.3.1 NCPAP Used at Resuscitation 146
7.3.2 NCPAP Used Early or Prophylactically for Respiratory Distress 147
7.3.3 NCPAP Used in Conjunction with Exogenous Surfactant 148
7.3.4 NCPAP for Extubation 149
7.3.5 NCPAP Used for Apnea 149
7.4 Comparative Studies of NCPAP Devices 150
7.4.1 Infant Studies 150
7.4.2 Model and Animal Studies 151
7.5 High-flow Nasal Cannula 152
7.6 Conclusions and Future Directions 153
References 153
8: Mechanical Ventilation 156
8.1 Conventional Mechanical Ventilation 156
8.1.1 Classification of Mechanical Ventilators 156
8.1.1.1 Introduction 156
8.1.1.2 Mechanical Ventilators 156
8.1.1.3 Continuous-Flow Systems 158
8.1.1.4 Variable-Flow Systems 159
8.1.1.5 Constant-Flow Systems 160
Conclusions 161
8.1.2 Patient–Ventilator Interface 161
8.1.2.1 Introduction 161
8.1.2.2 Effects of the Patient Circuit 161
8.1.2.2.1 The Endotracheal Tube 165
8.1.2.3 Apparatus Dead Space 166
8.1.2.4 Imposed Work of Breathing and Pressure-Support Ventilation 167
8.1.2.5 Summary 167
8.1.3 Ventilator Modes 168
8.1.3.1 Introduction 168
8.1.3.2 Controlled Ventilation 169
8.1.3.2.1 Waveforms 169
8.1.3.2.2 Control Variables 169
8.1.3.2.3 Phase Variables 170
8.1.3.2.3.1 Trigger Variables 170
8.1.3.2.3.2 Limit Variables 170
8.1.3.2.3.3 Cycle Variables 170
8.1.3.2.4 Controlled Modes of Ventilation 171
8.1.3.2.4.1 Intermittent Mandatory Ventilation 171
8.1.3.2.4.2 Synchronized Intermittent Mandatory Ventilation 171
8.1.3.2.4.3 Assist/Control Ventilation 171
8.1.3.2.5 Synchronization Principles and Trigger Systems 172
8.1.3.2.5.1 Introduction 172
8.1.3.2.5.2 Principles of Synchronization 172
8.1.3.2.5.3 Trigger Systems 173
8.1.3.2.5.4 Abdominal Motion 173
8.1.3.2.5.5 Thoracic Impedance 173
8.1.3.2.5.6 Airway Pressure 173
8.1.3.2.5.7 Airway Flow 173
8.1.3.2.5.8 Neural Triggering 174
8.1.3.2.5.9 Auto-cycling 174
8.1.3.2.5.10 Clinical Evidence 174
8.1.3.3 Assisted Ventilation 179
8.1.3.3.1 Pressure-Support Ventilation 179
8.1.3.3.1.1 Introduction 179
8.1.3.3.1.2 Definition 179
8.1.3.3.1.3 Physiological Effects (Breathing Pattern, Ventilation/Oxygenation, Work of Breathing) 180
8.1.3.3.1.4 Clinical Applications, Advantages, and Limitations 181
8.1.3.3.1.5 Asynchrony 182
8.1.3.3.2 Proportional Assist 187
8.1.3.3.2.1 General Aspects 187
8.1.3.3.2.2 Clinical Application in Infants 187
8.1.3.3.2.3 Backup Conventional Ventilation for Apnea and Hypoventilation 189
8.1.3.3.2.4 Technology 189
8.1.3.3.2.5 Terminology and Therapeutic Objectives 191
8.1.3.3.2.6 Physiological Effects of PAV/RMU 191
Effect on Elastance 191
Effect on Resistance 192
Effect on Chest Wall Distortion 192
Effects on Control of Breathing 193
Overcompensation of Lung Elastic Recoil and Pulmonary Resistance 193
Effect of Endotracheal Tube Leaks 193
8.1.3.3.2.7 Studies on PAV/RMU in Small Animal Species and Infants 193
8.1.3.3.3 Adaptive Support Ventilation 194
8.1.3.3.3.1 Adaptive Support Ventilation 194
Introduction 194
Principles of ASV 195
Settings, Adjustments, and Monitoring 195
Studies in Passive Condition 197
Studies in Active Condition and Weaning 198
Studies in Pediatrics 198
8.1.3.3.4 Neurally Adjusted Ventilatory Assist (NAVA) 199
8.1.3.3.4.1 Theoretical Aspects 199
Electrical Activity of Diaphragm (EAdi) 199
NAVA Principle 201
8.1.3.3.4.2 Specific Advantages and Difficulties with NAVA 201
Patient–Ventilator Synchronization 201
Concept of Diaphragm Unloading 202
Nava Level Setting 202
PEEP Setting 202
Clinical Benefits 204
8.1.3.3.4.3 Practical Considerations 204
8.1.3.4 Bi-level and Airway Pressure Release Ventilation 205
8.1.3.4.1 Introduction 205
8.1.3.4.2 Definition 206
8.1.3.4.3 Physiological Effects 206
8.1.3.4.4 Clinical Applications 207
8.1.3.4.5 Weaning 208
8.1.3.4.6 Contraindications and Disadvantages 209
8.1.3.4.7 Pressure-Controlled Ventilation 209
8.1.3.4.8 Effects of Airway and Circuit Resistance on Ventilation 209
8.1.3.4.9 Decrease in Transpulmonary Pressure 209
8.1.3.4.10 Interference with Spontaneous Breathing 209
8.1.3.5 Waveform Analysis 210
8.1.3.5.1 Introduction 210
8.1.3.5.2 Applied Physiology 211
8.1.3.5.3 Functional Characteristics of Mechanical Ventilators 214
8.1.3.5.3.1 Control Variables 214
8.1.3.5.3.2 Phase Variables 218
8.1.3.5.3.3 Limit Variable 218
8.1.3.5.3.4 Cycle Variables 218
8.1.3.5.4 Monitoring Increased Airway Resistance 219
8.1.3.5.4.1 Patients with Increased Airway Resistance 221
8.1.3.5.4.2 Measuring Resistance in Constant-Flow Mode of Ventilation 222
8.1.3.5.5 Monitoring Compliance in Mechanical Ventilation 223
8.1.3.5.6 Detection of Air Leaks 226
8.1.3.5.7 Clinical Interventions 226
Conclusion 226
8.2 Nonconventional Ventilation Modes 227
8.2.1 High-Frequency Ventilators 227
8.2.1.1 High-Frequency Oscillatory Ventilators 227
8.2.1.1.1 Principles of Functioning and Gas Exchange 227
8.2.1.1.1.1 Classification of HFO Ventilators 227
8.2.1.1.1.2 Ventilation 229
8.2.1.1.1.3 Oxygenation and Optimal Lung Volume 231
8.2.1.1.2 Contemporary HFO Ventilators 232
8.2.1.1.2.1 Piston HFO Ventilators 232
Sensor Medics 232
Metran Ventilators 234
Stephan 234
Heinen + Löwenstein 235
Acutronic 235
Flowline 235
8.2.1.1.2.2 Non-piston HFO Ventilators 235
Babylog 8000+ 235
VN500 236
SLE 5000 236
8.2.1.1.3 Performance Characteristics of HFO Ventilators 237
8.2.1.1.4 HFO Ventilator Developments and Future Directions 237
8.2.1.2 High-Frequency Jet Ventilators 238
8.2.1.2.1 HFJV: Principles of Functioning and Gas Exchange 238
8.2.1.2.2 Contemporary HFJ Ventilators 240
8.2.1.2.2.1 Bunnell Life Pulse 240
8.2.1.2.2.2 Paravent PAT Ventilator 241
8.2.1.2.2.3 Chirajet Ventilator 241
8.2.1.2.2.4 Monsoon Jet Ventilator 241
8.2.1.2.3 Performance Characteristics of HFJ Ventilators 241
8.2.1.2.4 HFJV: Technical Limitations and Ongoing Developments 242
8.2.1.3 High-Frequency Flow Interrupters 242
8.2.1.3.1 HFFI: Principles of Gas Exchange 243
8.2.1.3.2 Contemporary HFFI Ventilators 243
8.2.1.3.2.1 Infant Star 950 243
8.2.1.3.2.2 Bronchotron 243
8.2.1.3.2.3 Volumetric Diffusive Respirator 244
8.2.1.3.3 Performance Characteristics of HFFI Ventilators 244
Conclusions 244
8.2.2 Negative Pressure Ventilation: Physiological Aspects 245
8.2.2.1 Introduction 245
8.2.2.2 Types of Negative Pressure Ventilation 245
8.2.2.3 Effects on Transpulmonary Pressure (TPP) 246
8.2.2.4 Respiratory Effects 246
8.2.2.5 Cardiovascular Effects 247
8.2.3 Tracheal Gas Insufflation (TGI) 251
8.2.3.1 Introduction 251
8.2.3.2 Mechanism of Action 251
8.2.3.3 Data from Bench Tests in a Test Lung 252
8.2.3.3.1 Equipment Characteristics: Catheter or Specific Endotracheal Tube? 253
8.2.3.3.2 Calculation of CTGI Flow Rate to Wash Out the Instrumental Dead Space 253
8.2.3.3.3 Effect of CTGI Flow Rate on Intratracheal Pressure Rise and on Upstream Pressure 253
8.2.3.3.4 Efficacy of CTGI on PCO2 Reduction in an Artificial Lung Model 253
8.2.3.4 Physiological Consequences of CTGI 255
8.2.3.4.1 Effect of CTGI-0.5 on PEEP and ?P 255
8.2.3.4.2 Contribution of CTGI-0.5 to VT 255
8.2.3.4.3 Ventilation Gas, Humidity, and Temperature Tests 255
8.2.3.4.4 Continuous-TGI or Intermittent-TGI During the Expiratory Phase? 255
8.2.3.4.5 Safety Considerations 256
8.2.3.5 Animal Studies 257
8.2.3.6 Human Studies 257
8.2.3.7 Specific Insights in Neonates 258
Conclusion 258
8.2.4 Liquid Ventilation 259
8.2.4.1 Chemical Properties 259
8.2.4.2 Impact on Lung Mechanics 260
8.2.4.2.1 Pulmonary Structure and Function 260
8.2.4.2.2 Pulmonary Mechanics 260
8.2.4.2.3 Gas Exchange 260
8.2.4.3 Cardiovascular Impact 261
8.3 Noninvasive Positive-­Pressure Ventilation in the PICU 261
8.3.1 Technical Considerations 262
8.3.2 Machine–Patient Interfaces 263
8.3.2.1 Nasal Mask 263
8.3.2.2 Oronasal Mask 264
8.3.2.3 Helmet 265
8.3.2.4 Mouthpiece 266
8.3.2.5 Humidification During NIV in Children 266
8.3.2.6 Limitations and Adverse Effects of NIV Interfaces 267
Conclusion 268
References 269
9: Airway Humidification 282
9.1 Physiology of Airway Humidification 282
9.2 Physics of Humidification 283
9.3 Clinically Relevant Humidification Principles and Devices for Invasive and Noninvasive Ventilation 284
9.3.1 Heated Humidifiers 284
9.3.2 Artificial Noses 285
9.3.3 Aerosol Application 286
9.3.4 Irrigation of the Airway 286
9.4 Minimum Humidification Requirements 287
References 287
10: Specific Equipment Required for Home Mechanical Ventilation in Children 289
10.1 Principles 289
10.2 Home Ventilators Adapted to Paediatric Needs 290
10.3 Machine Patient Interfaces 292
10.4 Practical Organisation and Backup Systems 293
References 294
Part III: Respiratory Mechanics in the Mechanically Ventilated Patient 296
11: Respiratory Mechanics in the Mechanically Ventilated Patient 297
11.1 Introduction 297
11.2 Terminology and Conventions 298
11.3 Mechanical Model of the Passive Respiratory System 299
11.4 Signals for Respiratory Mechanics Measurements 301
11.4.1 Measurement Devices (Principles and Technical Requirements) 301
11.4.1.1 Static Properties 301
11.4.1.2 Dynamic Properties 301
11.4.1.3 Frequency Response 302
11.4.1.4 Input Impedance 302
11.4.1.5 Analog-to-Digital Conversion 302
11.4.1.6 Transducers for Measuring Pressure and Flow 303
11.4.2 Airway Gas Flow 304
11.4.2.1 Laminar Flow 304
11.4.2.2 Turbulent Flow 304
11.4.2.3 Reynolds Number 305
11.4.2.3.1 Threshold Resistors 305
11.4.3 Airway Pressure 306
11.4.4 Transesophageal Pressure (Meaning and Measurement) 308
11.4.4.1 Alveolar Pressure 309
11.5 Measurement of Passive Respiratory Mechanics 309
11.5.1 Mechanics of the Passive Respiratory System 309
11.5.2 Resistance, Compliance, Inertance, Tissue Damping, and Elastance 309
11.5.2.1 Resistance 309
11.5.2.1.1 Compliance and Elastance 310
11.5.2.2 Chest Wall Compliance 310
11.5.2.3 Lung Compliance 310
11.5.2.4 Elastance 311
11.5.2.5 Inertance 311
11.5.2.6 Tissue Damping 311
11.5.3 Dynamic Hyperinflation 311
11.5.4 Principals and Practice of Classical Measurement of Respiratory System 312
11.5.5 Simplified Methods to the Measurement of Total Respiratory Mechanics 312
11.5.5.1 Mead–Whittenberger Technique 312
11.5.5.2 Mortola–Saetta Method 313
11.5.5.3 Volume Corrected Resistance 313
11.5.5.4 Forced Oscillation Technique 313
11.5.5.5 Passive Flow–Volume Technique 313
11.5.5.6 Interrupter Technique 314
11.5.6 Respiratory Mechanics by Least-Squares Fitting 314
11.5.7 Practical Application and Result Interpretation 315
11.5.7.1 Elastance/Static Compliance 315
11.5.7.2 Dynamic Compliance 316
11.5.7.3 Pressure–Volume Curves 316
11.5.7.4 Resistance 316
11.5.7.4.1 Limitations 317
11.6 Respiratory Time Constants 318
11.6.1 Time Constants: Basic Meaning and Concepts of Intrapulmonary Pressure Equilibration 318
11.6.1.1 Concepts of Intrapulmonary Pressure Equilibration 319
11.6.2 Measurement of the Time Constant 322
11.6.3 Simplified Approach (Analysis of the Flow–Time Curve and the Flow–Volume Loop) 322
11.6.3.1 Flow–Time Curve 322
11.6.3.2 Flow–Volume Loop 323
11.7 Lung Volume Measurements in the Ventilated Patient 324
11.7.1 Techniques and Methods 324
11.7.1.1 Measurement of the Delivered Volume by the Mechanical Ventilator 324
11.7.1.2 Measuring the Specific Lung Volume of the Patient 324
11.7.2 Result Interpretation and 7.3 Limitations, Drawbacks, and Unknowns 325
11.8 Respiratory System Pressure-Volume Curve 327
11.8.1 Static Pressure–Volume Curve 327
11.8.1.1 Introduction 327
11.8.1.2 The “Static” Pressure–Volume Curve 327
11.8.1.2.1 Measurement of the Static PV Curve: Methods, Conditions, and Error Sources 327
11.8.1.2.1.1 Generation of a Pressure–Time Curve: The Basis of PV Mapping 327
Super-Syringe Technique 327
CPAP Steps Technique 328
Multiple Occlusion Technique 329
Constant Flow Methods 329
PV Curves During High-Frequency Oscillatory Ventilation 329
Stepwise PEEP Maneuver 329
11.8.1.2.1.2 Measurement of Lung Volume During PV Maneuvers 330
Super-Syringe Method 330
Ventilator Techniques 331
CT Imaging 331
Respiratory Inductance Plethysmography (RIP) 331
11.8.1.2.1.3 Construction of the PV Curve 331
11.8.1.2.2 Reproducibility of PV Curves 331
11.8.1.2.2.1 Compartments Contributing to the Shape of the PV Curve 332
11.8.1.2.3 The Inflation and Deflation PV Curves 332
11.8.1.2.3.1 Features of the PV Curve 332
11.8.1.2.3.2 Anatomical and Physiological Correlates of PV Curve Landmarks and Hysteresis 333
11.8.1.2.3.3 Modeling of the Inflation and Deflation Curves 335
11.8.1.2.4 Interpretation and Clinical Implication of the Static PV Curve 336
11.8.2 Pressure–Volume Loops Under Dynamic Conditions 337
11.8.2.1 Measurement of the Dynamic Pressure–Volume Loop 337
11.8.2.1.1 Mead Whittenberger Analysis 338
11.8.2.1.2 Least-Squares Regression Method 338
11.8.2.1.3 Multiple Linear Regression 338
11.8.2.2 Ventilator Display 338
11.9 Respiratory Mechanics in the Actively Breathing Patient with/Without Respiratory Support 342
11.9.1 Introduction 342
11.9.2 Concept and Methods of Measurements 342
11.9.3 Measurements of the Energetics of Breathing 344
11.9.3.1 Work of Breathing 344
11.9.3.2 Flow-Resistive Work 348
11.9.3.3 Elastic Work 349
11.9.3.4 Expiratory Work 349
11.9.3.5 Negative Inspiratory Work 350
11.9.3.6 Work Units 350
11.9.3.7 Pressure–Time Product 350
11.9.3.8 Techniques and Limitations 352
11.9.4 Clinical Relevance 353
11.9.4.1 WOB in the Pediatric Patient 356
11.9.4.2 WOB in the Neonatal Patient 358
11.10 Respiratory Monitoring of the Mechanical Behavior of the Respiratory System During Mechanical Ventilation: Clinical Application 359
11.10.1 Introduction 359
11.10.2 Gas Exchange 360
11.10.3 Work of Breathing Measurements 360
11.10.3.1 Esophageal Manometry 360
11.10.3.2 Respiratory Plethysmography 360
11.10.4 Monitoring Respiratory Mechanics 361
11.10.4.1 Resistance, Compliance, and Time Constant 362
11.10.4.2 Loops Using Pressure, Flow, and Volume Traces: Special Considerations 363
11.10.4.2.1 Precision of Measurements 363
11.10.4.2.2 Flow–Volume Loops 364
11.10.4.2.3 Pressure–Volume Loops 365
11.10.4.2.3.1 Restrictive Lung Disease 365
11.10.4.2.3.2 Obstructed Airway Disease 367
Medium and Small Airway Disease 367
Large Airway Disease 369
Conclusion 370
References 370
Part IV: Respiratory Monitoring in the Mechanically Ventilated Patient 376
12: Classical Respiratory Monitoring 377
12.1 Monitoring Oxygenation of Ventilated Infants and Children 377
12.1.1 Effects of Altitude 381
12.1.2 Blood Gas Measurements 382
12.1.2.1 Intermittent 382
12.1.2.2 Continuous Blood Gas Monitoring 384
12.1.3 Pulse Oximetry 385
12.1.3.1 Limitations of Pulse Oximetry 387
12.1.4 Summary 389
12.2 Ventilation: Adequacy of Breathing Assessment 390
12.2.1 Capnography 390
12.2.2 Time-Based Capnography/End-Tidal Carbon Dioxide Measurements 390
12.2.2.1 Methods, Waveforms, and Nomenclature 390
12.2.2.2 PetCO2 Monitoring 391
12.2.2.3 A Practical Approach to Interpreting Capnograms 394
12.2.2.3.1 The Inspiratory Baseline (Phase I) 394
12.2.2.3.2 The Expiratory CO2 Increase (Phase II) 395
12.2.2.3.3 The Alveolar Plateau (Phase III) 395
12.2.2.3.4 The Decrease of Exhaled CO2 at the Beginning of Inspiration (Phase IV) 395
12.2.2.4 Relationship Between PetCO2 and PaCO2 396
12.2.2.5 The Pa ? etCO2 Difference and Ventilation/Perfusion Abnormalities 397
12.2.2.6 Alveolar Ventilation and Dead Space 398
12.2.2.7 Specific Considerations During Noninvasive Ventilation 399
12.2.2.8 Specific Considerations in the Neonatal Patient 400
12.2.2.8.1 Small Airways 400
12.2.2.8.2 Lung Growth 400
12.2.2.8.3 Respiratory Time Constant 400
12.2.2.8.4 Breathing Pattern 400
12.2.2.9 Current Technical Limitations of Capnography in the Neonatal Patient 401
12.2.2.10 Time-Based Capnography and Endotracheal Tube Placement 402
12.2.3 Volume-Based (Volumetric) Capnography 402
12.2.3.1 Technique 403
12.2.3.2 Carbon Dioxide Production/Metabolism 403
12.2.3.3 Clinical Applications 404
12.2.3.3.1 Endotracheal Intubation 404
12.2.3.3.2 Mechanical Ventilation 405
12.2.3.3.3 Pulmonary Blood Flow 405
12.2.3.3.4 Assessment of Dead Space Ventilation 406
12.3 Transcutaneous Carbon Dioxide Monitoring in Infants and Children 407
12.3.1 Introduction 407
12.3.2 Technical Aspects of Transcutaneous Carbon Dioxide Monitoring 407
12.3.3 Clinical Applications of TC-CO2 Monitoring 409
12.3.3.1 Neonatal Applications 409
12.3.3.2 Monitoring During Mechanical Ventilation (Pediatric ICU) 409
12.3.3.3 Spontaneous Ventilation 410
12.3.3.4 Intraoperative Applications 411
12.3.3.5 Apnea Testing 411
12.3.3.6 Monitoring of Acid–Base Status 412
12.3.3.7 Evaluation of Tissue Perfusion 412
12.3.4 Summary 413
References 414
13: Monitoring of the Mechanical Behaviour of the Respiratory System During Controlled Mechanical Ventilation 422
Outline Placeholder 422
13.1 Respiratory System Compliance (i.e. The Pressure–Volume Relationship) During Ongoing Mechanical Ventilation 422
13.1.1 Dynamic Pressure–Volume-­Loop Analysis and Dynamic Compliance for Assessment of Disease Evolution 424
13.1.2 Dynamic Pressure–Volume-­Loop Analysis and Dynamic Compliance Measurements for Choosing Ventilator Settings 425
13.1.2.1 During Conventional Ventilation 425
13.1.2.1.1 Optimising PEEP by Dynamic Compliance Measurements and Graphic Analysis 425
13.1.2.1.2 Identification of Dynamic Hyperexpansion 429
13.1.2.2 During High-Frequency Ventilation 429
13.1.2.2.1 Monitoring of Compliance During High-­Frequency Ventilation 429
13.1.2.2.2 Difficulties in Determining Dynamic Crs During High-Frequency Ventilation 430
13.1.2.2.3 Wave Form Attenuation 430
13.1.2.2.4 Mathematical Assumptions of Respiratory System Mechanics 430
13.1.2.2.5 Alternatives to Crs During HFV to Describe Respiratory Mechanics 431
13.2 Respiratory System Resistance 435
13.2.1 Resistance in Intubated and Non-intubated Patients 435
13.2.2 Confounding Factors for the Measurement of Respiratory Resistance 435
13.2.3 Measurement Methods During Ongoing Mechanical Ventilation 435
13.2.3.1 Passive Measurement of Respiratory Resistance 435
13.2.3.1.1 Single-Breath Occlusion Technique 435
13.2.3.2 Measurement Technique 435
13.2.3.3 Active Measurements of Respiratory Resistance 436
13.2.3.3.1 Mead-Whittenberger Method 436
13.2.3.3.2 Multiple Linear Regression Method 437
13.2.3.3.2.1 Dynamic Bedside Assessment 437
13.2.4 Clinically Important Implications 437
13.2.4.1 Measurement of Resistance to Guide Ventilation Strategies 437
13.2.4.2 Monitoring of Progression of Disease and Response to Treatment 438
References 438
14: Monitoring Lung Volumes During Mechanical Ventilation 442
14.1 Respiratory Inductive Plethysmography 442
14.1.1 Introduction 442
14.1.2 Technique 442
14.1.2.1 Theoretical Considerations 442
14.1.2.1.1 Equipment 443
14.1.2.1.2 Calibration 444
14.1.2.2 Clinical Applications 444
14.1.2.2.1 Assessment of EELV 444
14.1.2.2.1.1 Conventional Mechanical Ventilation 445
14.1.2.2.1.2 High-Frequency Ventilation 446
14.1.2.2.1.3 Non-invasive Ventilation 447
14.1.2.2.2 Assessment of Tidal Volume and Breathing Patterns 448
14.1.2.2.2.1 Conventional Mechanical Ventilation 448
14.1.2.2.2.2 High-Frequency Ventilation 449
14.1.2.2.2.3 Non-invasive Ventilation 449
14.1.2.3 Limitations 450
14.1.2.4 Future Directions 450
14.2 Lung Imaging Methods 452
14.2.1 Computed Tomography 452
14.2.1.1 What Have We Learned from Computed Tomography of the Lung? 452
14.2.1.2 Measurements of CT Densities 454
14.2.1.3 Limitations of CT Scanning 455
14.2.2 Magnetic Resonance Imaging 455
14.2.3 Positron Emission Tomography 456
14.3 Bedside Lung Imaging Methods (Electrical Impedance Tomography) 458
14.3.1 Introduction 458
14.3.2 Technique 458
14.3.2.1 Electrical Bioimpedance 458
14.3.2.2 EIT Setup 459
14.3.2.3 EIT Data Acquisition 459
14.3.2.4 EIT Image Reconstruction 460
14.3.3 Image Interpretation and Qualitative Analysis 460
14.3.4 Tracking Lung Volumes and Tidal Volume Distribution 462
14.3.4.1 Changes in Regional Lung Volumes 462
14.3.4.2 Tidal Volume Distribution 464
14.3.4.3 Combination of Functional EIT Information 464
14.3.5 Clinical Experience 465
14.3.6 Limitations and Drawbacks 466
14.3.7 Perspectives 467
References 467
15: Monitoring Interactions Between Spontaneous Respiration and Mechanical Inflations 473
15.1 Introduction 473
15.2 Response of the Ventilator to Patient Effort 474
15.2.1 Ventilator-Related Factors 474
15.2.2 Trigger Variable 474
15.2.3 Factors Affecting Pressure Delivery 476
15.2.4 Cycle Off Variable 478
15.2.5 Patient-Related Factors 479
15.2.5.1 Mechanics of the Respiratory System and Characteristics of Pmus Waveform 479
15.2.5.1.1 Response of the Patient Effort to the Ventilator-Delivered Breath 480
15.3 Patient-Ventilator Asynchrony 481
15.3.1 Trigger Asynchrony 481
15.3.2 Flow Asynchrony 484
15.3.3 Termination Asynchrony 486
15.3.4 Expiratory Asynchrony 486
15.3.5 Short and Prolonged Cycled Asynchrony 487
References 488
16: Basic and Practically Useful Respiratory Monitoring of a Mechanically Ventilated Patient in Resource-Limited Countries 490
16.1 Introduction 490
16.2 Basic Monitoring 491
16.3 Monitoring of Blood Gases 491
16.3.1 Blood Gas Analysis 491
16.3.2 Saturation Monitoring 491
16.3.3 Transcutaneous Monitoring of pCO2 or pO2 492
16.3.4 Tissue Monitoring 492
16.3.5 End-Tidal Monitoring (ETCO2) 492
16.4 Respiratory Mechanics Measurement 493
16.4.1 Pressures 494
16.4.2 Flow and Volume 494
16.4.3 Pressure-Volume Curves 495
16.5 New Technology 495
Conclusions 495
References 495
Part V: Indications for Respiratory Support 499
17: Indications for Noninvasive Respiratory Support 500
17.1 The Neonatal Patient 500
17.1.1 Introduction 500
17.1.2 Nasal Respiratory Support During Neonatal Resuscitation in the Delivery Room 502
17.1.3 Nasal CPAP in the Premature Infant 502
17.1.4 Nasal Intermittent Mandatory Ventilation (NIMV) in the Premature Infant 503
17.1.5 Nasal Flow for Premature Infants 506
17.1.6 Contraindications for Noninvasive Respiratory Support 506
17.1.7 Adjunct Therapies: Surfactant to Avoid Mechanical Ventilation 507
17.2 The Pediatric Patient 509
17.2.1 Introduction 509
17.2.2 Indications in Acute Respiratory Failure 510
17.2.3 Indications in the Child with Chronic Pathologies 516
17.2.4 Modes of Application and Indications 520
17.2.4.1 CPAP 520
17.2.4.2 Noninvasive Positive Pressure Ventilation 520
17.2.5 Contraindications for Noninvasive Respiratory Support 522
17.2.6 Adjuvant Therapies: Helium–Oxygen (Principles and Clinical Experience) to Avoid Intubation 523
References 526
The Pediatric Patient 529
18: Indications for Invasive Conventional Mechanical Ventilation 532
18.1 The Neonatal Patient 532
18.1.1 Introduction 532
18.1.2 Major Indications for Invasive Assisted Ventilation 533
18.1.2.1 Critical Upper Airway Obstruction 533
18.1.2.2 Respiratory Pump Failure 533
18.1.2.3 Central Control of Breathing Failure 534
18.1.2.4 Intrapulmonary Conditions Causing Respiratory Gas Exchange Failure 534
18.1.3 Assessment of Need for Mechanical Ventilation 534
18.1.4 Ventilation Targets 535
18.1.4.1 Oxygen 535
18.1.4.2 Carbon Dioxide, pH 536
18.1.4.3 Airway Pressures, Lung Volume 536
18.1.5 Short- and Long-Term Outcome 537
18.1.6 Contraindications of Invasive Mechanical Ventilation 538
18.2 The Pediatric Patient 538
18.2.1 Introduction 539
18.2.2 Primary Indications for Assisted Ventilation 539
18.2.2.1 Unstable Airways 540
18.2.2.1.1 Anatomic Airway Integrity 540
18.2.2.1.2 Neurologic Dysfunction 541
18.2.2.1.2.1 Seizures 542
18.2.2.1.2.2 Traumatic Brain Injury 542
18.2.2.2 Impaired Gas Exchange 542
18.2.2.2.1 Hypoxia 543
18.2.2.2.2 Hypercarbia 544
18.2.2.2.3 Lower Airway Obstruction 544
18.2.2.2.4 Mixed Hypoxia/Hypercarbia 545
18.2.2.3 Respiratory Muscle Insufficiency 545
18.2.2.4 Reduction of Mechanical load 546
18.2.2.4.1 Shock States 546
18.2.2.4.2 Cardiovascular Dysfunction 546
18.2.3 Assessment of the Need for Mechanical Ventilation 548
18.2.4 Cautions and Contraindications to Invasive Mechanical Ventilation 550
18.2.5 Short- and Long-Term Outcomes 551
References 552
19: Indications for Nonconventional Ventilation Modes 555
19.1 High-Frequency Ventilation 555
19.1.1 High-Frequency Oscillatory Ventilation (HFOV) 555
19.1.1.1 Introduction 555
19.1.1.2 Educational Aims 556
19.1.1.3 Pathophysiological Rationale for Choosing HFOV 556
19.1.1.3.1 What Is HFOV? 556
19.1.1.3.1.1 HFOV Characteristics 556
19.1.1.3.1.2 HFOV Operation and Gas Exchange 556
19.1.1.3.1.3 Other Types of High-Frequency Ventilation 557
19.1.1.3.2 What Factors Cause Ventilator-Induced Lung Injury? 557
19.1.1.3.2.1 Barotrauma and Volutrauma 557
19.1.1.3.2.2 Atelectotrauma 558
19.1.1.3.2.3 Biotrauma 558
19.1.1.3.3 Ventilation Strategies That Prevent Ventilator-Induced Lung Injury 558
19.1.1.3.3.1 Prevention of Atelectasis 559
19.1.1.3.3.2 Prevention of Overdistension 559
19.1.1.3.3.3 Resulting Hypercapnia 559
19.1.1.3.4 How Does HFOV Prevent Ventilation-­Induced Lung Injury? 559
19.1.1.3.4.1 Recruitment “Open Up the Lungs” 559
19.1.1.3.4.2 Optimizing Mean Airway Pressure “Keep the Lungs Open” 559
19.1.1.3.4.3 Limiting Tidal Volumes “Prevent Overdistension” 560
19.1.1.4 Elective vs. Rescue HFOV 560
19.1.1.5 Choosing the Right Patient for HFOV 560
19.1.1.5.1 Is Recruitment Possible? 560
19.1.1.5.2 The Importance of Ventilation Strategies 561
19.1.1.5.3 Classical Indications for HFOV in Neonatal and Pediatric Patients 561
19.1.1.5.4 Indications in Adult Patients 561
19.1.1.6 HFOV in the Neonatal Intensive Care Unit 561
19.1.1.6.1 Elective HFOV in Respiratory Distress Syndrome 561
19.1.1.6.1.1 Short-Term Outcome 561
19.1.1.6.1.2 Long-Term Outcome 564
19.1.1.6.1.3 Recommendation 564
19.1.1.6.2 Rescue HFOV in Respiratory Distress Syndrome 564
19.1.1.6.2.1 Recommendation 565
19.1.1.6.3 HFOV for Other Indications 565
19.1.1.6.3.1 Severe Pulmonary Dysfunction and Intractable Respiratory Failure 565
19.1.1.6.3.2 Recommendation 565
19.1.1.6.3.3 Diaphragmatic Hernia 565
19.1.1.6.3.4 Recommendation 565
19.1.1.6.3.5 Severe Persistent Pulmonary Hypertension 566
19.1.1.6.3.6 Recommendation 566
19.1.1.7 HFOV in the Pediatric Intensive Care Unit 566
19.1.1.7.1 HFOV in Acute Respiratory Distress Syndrome 566
19.1.1.7.1.1 HFOV for Acute Respiratory Distress Syndrome in Pediatric Patients 566
19.1.1.7.1.2 HFOV for Acute Respiratory Distress Syndrome in Adult Patients 566
19.1.1.7.1.3 Acute Respiratory Distress Syndrome, Timing of HFOV 567
19.1.1.7.1.4 Recommendation 568
19.1.1.7.2 HFOV for Other Indications 568
19.1.1.7.2.1 Small Airway Disease 568
19.1.1.7.2.2 Recommendation 568
19.1.1.7.2.3 Asymmetric Lung Injury 569
19.1.1.7.2.4 Recommendation 569
19.1.1.7.2.5 Air Leak Syndromes 569
19.1.1.7.2.6 Recommendation 569
19.1.1.7.2.7 Acute Lung Injury Following Trauma 569
19.1.1.7.2.8 Recommendation 569
19.1.1.7.2.9 Burn and Smoke Inhalation Patients 569
19.1.1.7.2.10 Recommendation 570
19.1.1.7.2.11 Acute Lung Injury with Concurrent Brain Injury 570
19.1.1.7.2.12 Recommendation 570
19.1.1.7.2.13 Acute Chest Syndrome 570
19.1.1.7.2.14 Recommendation 571
19.1.2 Indications for High-­Frequency Jet Ventilation (HFJV) 572
19.1.2.1 Respiratory Distress Syndrome and Other Surfactant Deficiency States 573
19.1.2.1.1 Clinical Studies: Rescue Therapy 573
19.1.2.1.2 Clinical Studies: First-Line Treatment 573
19.1.2.2 Air Leak Syndromes 574
19.1.2.3 Severe Nonuniform Lung Disease/PPHN 575
19.1.2.4 Impaired Chest Wall Movement: Abdominal Distension 576
19.1.2.5 Patients with Impaired Hemodynamic Status 577
19.1.2.6 Pulmonary Hypoplasia 577
19.1.2.7 Bronchopulmonary Dysplasia 577
19.1.2.8 Intraoperative Use of HFJV 577
19.1.2.9 Interhospital Transport 578
19.1.2.10 HFJV in Older Infants and Children 578
Conclusion 578
19.2 Tracheal Gas Insufflation (TGI) 579
19.2.1 Introduction 579
19.2.2 Neonatal Indications 579
19.2.2.1 Efficacy of CTGI in Neonates 579
19.2.2.2 Factors Influencing CTGI Efficacy in Neonates 580
19.2.2.3 Effect of CTGI During a Prolonged Period 580
19.2.3 Pediatric Indications 581
19.3 Indications for Liquid Ventilation 583
19.3.1 Introduction 583
19.3.2 Very Low-Birth-Weight Infants (VLBW) 583
19.3.3 Extracorporeal Life Support 583
19.3.4 Bronchopulmonary Dysplasia 584
19.3.5 Summary 584
19.4 Negative-Pressure Ventilation: Clinical Applications 585
19.4.1 Introduction 585
19.4.2 Negative-Pressure Ventilation (NPV) and Cardiac Patients 585
19.4.3 Noninvasive Ventilation in Respiratory Failure: Positive vs. Negative 587
19.4.4 Negative End-Expiratory Pressure (NEEP) and Bronchiolitis 587
19.4.5 Negative-Pressure Ventilation (NPV) in Neonatal Respiratory Distress Syndrome (RDS) 587
19.4.6 Negative-Pressure Ventilation in Acute Respiratory Failure (ARF) 588
19.4.7 Negative-Pressure Ventilation (NPV) and Long-Term Use 589
19.4.8 Unknown Issues 589
References 589
20: Respiratory Support in Developing Countries Where Resources Are Limited 599
20.1 Oxygen Therapy 599
20.1.1 Definition of Hypoxaemia and Indications for Oxygen Therapy 599
20.1.2 What to Do if the Child Does Not Improve or Deteriorates After Oxygen Is Given 602
20.1.3 Monitoring the Progress of Children on Oxygen 602
20.1.4 Trials Off Oxygen and When to Stop Oxygen 603
20.1.5 General Care for Children with Hypoxaemia or Severe Respiratory Distress 603
20.1.5.1 Minimal Handling 603
20.1.5.2 Positioning 603
20.1.5.3 Fluids and Nutrition 604
20.1.6 Overcoming Parents’ Concerns About Oxygen Use 604
20.1.7 Sources of Oxygen 604
20.1.8 Devices for Giving Oxygen 605
20.2 Continuous Positive Airway Pressure (CPAP) Systems 605
20.2.1 Bubble-Continuous Positive Airway Pressure (Bubble-CPAP) 605
20.2.2 High-Flow CPAP 606
20.2.3 CPAP/BiPAP Drivers for Noninvasive Respiratory Support 606
20.3 Mechanical Ventilation 606
20.4 Respiratory Stimulants (Methylxanthines) as Adjuvants in Neonatal and Infant Practice 607
20.4.1 Methylxanthines 607
References 608
Part VI: Clinical Use of Conventional Modes of Ventilator Support 609
21: Respirator Cycle Control Modes 610
21.1 Assist-Control Ventilation/Intermittent Positive Pressure Ventilation 611
21.1.1 Principles 611
21.1.2 Inspiratory Flow Settings 611
21.1.3 Cycle Time Settings 612
21.1.4 Expected Physiologic Effects 614
21.1.5 Clinical Experience, Advantages, and Limitations 615
21.1.5.1 In the Neonatal Patient 615
21.1.5.2 In the Pediatric Patient 616
21.2 Synchronized Intermittent Mandatory Ventilation 616
21.2.1 Pressure and Flow Triggering 617
21.2.2 Cycle Time Settings 618
21.2.3 Expected Physiologic Effects 618
21.2.4 Clinical Experience, Advantages, and Limitations 619
21.2.4.1 In the Neonatal Patient 619
21.2.4.2 In the Pediatric Patient 619
21.2.5 SIMV for Ventilator Weaning 620
21.3 Pressure Control Ventilation 620
21.4 Volume Control Ventilation 621
21.5 Five Hybrid Techniques 621
21.5.1 Pressure-Regulated Volume Control and Volume Guarantee 621
21.5.1.1 Patient-Ventilator Interaction with Volume Guarantee and Volume-Targeted Modes 624
21.5.1.2 Clinical Experience in Neonatal Patients 625
21.5.1.3 Clinical Experience in Pediatric Patients 628
21.5.2 Volume Assured Pressure Support 629
21.6 Pressure Support Ventilation 629
21.6.1 Initiation of the Cycle 629
21.6.2 Cycling Off to Expiration 630
21.6.3 Expected Physiologic Effects 630
21.6.4 Clinical Use of Pressure Support in Neonates 630
21.6.4.1 Clinical Use of Pressure Support in Pediatric Patients 631
21.6.4.2 Advantages and Limitations of Pressure Support in Pediatric Patients 632
21.7 PSV During Noninvasive Ventilation 632
References 633
Part VII: Clinical Use of Nonconventional Modes of Ventilator Support 637
22: Clinical Use of Nonconventional Modes of Ventilator Support 638
22.1 High-Frequency Oscillatory Ventilation (HFOV) 638
22.1.1 HFOV in Neonates 638
22.1.1.1 Introduction 638
22.1.1.2 History of HFOV: The Animal Studies 638
22.1.1.3 History of HFOV: The Clinical Trials 638
22.1.1.4 Physiology of HFOV 639
22.1.1.5 When to Consider HFOV 639
22.1.1.5.1 General Considerations 639
22.1.1.5.2 Respiratory Distress Syndrome 640
22.1.1.5.3 Persistent Pulmonary Hypertension (PPHN) and Meconium Aspiration Syndrome (MAS) 640
22.1.1.5.4 Abdominal Surgery/NEC 640
22.1.1.5.5 Hypoplastic Lungs 640
22.1.1.5.6 Surgery 640
22.1.1.5.7 Congenital Diaphragmatic Hernia (CDH) and Other Conditions 640
22.1.1.5.8 Extracorporeal Membrane Oxygenation (ECMO) 640
22.1.1.6 Management of the Infant on HFOV 641
22.1.1.6.1 Mean Airway Pressure (MAP) 641
22.1.1.6.2 Frequency and Amplitude 641
22.1.1.6.3 Inspiratory Time 641
22.1.1.6.4 Flow 641
22.1.1.6.5 Weaning 641
22.1.1.6.6 Care of the Infant on HFOV 642
22.1.1.6.7 Extubation 642
Conclusion 642
22.1.2 Pediatric HFOV 642
22.1.2.1 Evidence for High-­Frequency Ventilation in Pediatric Patients 642
22.1.2.2 Ventilators Used for High-Frequency Ventilation in the Pediatric Population 643
22.1.2.3 Initiating HFOV in Pediatric Respiratory Failure 643
22.1.2.3.1 Indication and General Considerations 643
22.1.2.3.2 Considerations for Exclusion 644
22.1.2.3.2.1 Obstructive Airway Disease 644
22.1.2.3.2.2 Hemodynamic Considerations 644
22.2 Clinical Use of High-­Frequency Jet Ventilation (HFJV) 645
22.2.1 Basic Principles of Controlling Gas Exchange with HFJV 645
22.2.1.1 Ventilator Rate 646
22.2.1.2 Inspiratory Time 646
22.2.1.3 Peak Inspiratory Pressure 646
22.2.1.4 PEEP 646
22.2.1.5 Background Conventional IMV 646
22.2.2 Tailoring Ventilation Strategy to Disease Pathophysiology 647
22.2.2.1 Uniform, Atelectatic Lung Disease 647
22.2.2.1.1 Rescue HFJV in Infants with Atelectatic Lung Disease 647
22.2.2.1.2 Early Use of HFJV in Infants with Atelectatic Lung Disease 647
22.2.2.1.3 First-Line Treatment 648
22.2.2.2 Air Leak Syndrome 648
22.2.2.3 Severe Nonuniform Lung Disease/PPHN 648
22.2.2.4 Restrictive Disease 649
22.2.2.5 Patients with Impaired Hemodynamic Status 649
22.2.2.6 Pulmonary Hypoplasia 649
22.2.2.7 Bronchopulmonary Dysplasia 649
Conclusion 650
22.3 Continuous Tracheal Gas Insufflation (CTGI) 650
22.3.1 Introduction 650
22.3.1.1 CTGI Flow Input in the Trachea 651
22.3.1.2 Security Devices 651
22.3.1.3 Humidity Management 652
22.3.1.4 CTGI Monitoring 653
22.3.1.5 Time to Connect and Time to Disconnect 654
22.3.1.6 Warning and Limitations of the CTGI Technique 654
22.4 Clinical Use of Liquid Ventilation 656
22.4.1 Very Low Birth Weight Infant (VL BW) 656
22.4.2 Extracorporeal Life Support 658
22.4.3 Bronchopulmonary Dysplasia 658
References 659
Part VIII: General Management of the Ventilator-­Supported Patient 662
23: The Prone Position in Acute Lung Injury 663
23.1 Introduction 663
23.2 Basic Principles 663
23.3 Physiologic Effects 664
23.3.1 Normal Lungs 664
23.3.2 Diseased Lungs 665
23.4 Effectiveness and Outcome 667
23.5 Indications and Contraindications 671
23.6 Complications 672
23.7 Practical Steps for Staff 673
23.8 The Future 673
23.9 Summary and Conclusion 674
Appendix 23.1: Prone Positioning Check Sheet 675
References 676
24: Respiratory Physiotherapy and Endotracheal Suctioning During Mechanical Ventilation 679
24.1 Introduction 679
24.2 Respiratory Physiotherapy 680
24.2.1 Effects of Chest Physiotherapy 680
24.2.2 Indications for Chest Physiotherapy 681
24.2.3 Modalities 683
24.2.3.1 Positioning 683
24.2.3.2 Mobilisation 683
24.2.3.3 Chest Manipulations 685
24.2.3.4 Manual Hyperinflation 685
24.3 Endotracheal Suctioning 686
24.3.1 Adverse Clinical Effects 686
24.3.2 Precautions and Contraindications 687
24.3.3 Effects of ET Suctioning on Lung Mechanics 688
24.3.4 Frequency of ET Suctioning 688
24.3.5 Open- Versus Closed-System ET Suctioning 689
24.3.6 Preoxygenation 689
24.3.7 Suction Catheter Size 690
24.3.8 Vacuum Pressure 691
24.3.9 Sterility 692
24.3.10 Duration of Suctioning 692
24.3.11 Depth of Catheter Insertion 692
24.3.12 Use of Saline 693
24.3.13 Recruitment Manoeuvres Performed After ET Suctioning 693
24.4 Evidence-Based Clinical Recommendations 694
Conclusions 697
References 698
25: Fluid Management in the Ventilated Patient 703
25.1 Fluid Management in the Preterm Neonate 703
25.1.1 Introduction 703
25.1.2 How to Assess Fluid Balance Status? 704
25.1.3 Which Fluids? 704
25.1.4 How Much Fluid? 705
25.2 In the Pediatric Patient 706
25.2.1 Fluid Management in the Mechanically Ventilated Patient 706
25.2.2 Pathophysiology 707
25.2.3 Measuring Outcomes of Fluid Management in the Mechanically Ventilated Patient 708
25.2.4 Early Clinical Trials 708
25.2.5 FACTT and Recent Clinical Trials 708
25.2.6 Diuretic Therapy and Choice of Fluids in Acute Lung Injury 711
25.2.7 Pediatric Data 712
25.2.8 Summary 712
References 713
Part IX: Permissive Hypercapnia 716
26: Permissive Hypercapnia 717
26.1 Introduction 717
26.2 Physiologic Effects of Hypercapnia 718
26.2.1 Pulmonary System 718
26.2.2 Central Nervous System 718
26.2.3 Cardiovascular System 719
26.3 Insights from Laboratory Studies 719
26.3.1 Pulmonary 720
26.3.2 Cardiovascular 721
26.3.3 Neurologic 721
26.3.4 Others 722
26.4 Cellular and Molecular Effects of Hypercapnia 722
26.4.1 Acidosis vs. Hypercapnia 722
26.4.2 Regulation of Gene Expression 722
26.4.3 Attenuation of Neutrophil Activity and Cytokine Levels 723
26.4.4 Modulation of Free Radical Biology 723
26.5 Role of Permissive Hypercapnia in Clinical Settings 724
26.5.1 Neonatal Respiratory Distress Syndrome 724
26.5.2 Persistent Pulmonary Hypertension of the Newborn (PPHN) 725
26.5.3 Congenital Diaphragmatic Hernia 725
26.5.4 Congenital Heart Disease 725
26.5.5 Acute Severe Asthma 726
26.5.6 Acute Respiratory Distress Syndrome 726
26.6 Limitations and Contraindications of Permissive Hypercapnia 726
26.6.1 Permissive Hypercapnia and the Immature Brain 726
26.6.2 Intracranial Pressure Regulation 727
26.6.3 Pulmonary Vascular Resistance 727
26.6.4 Buffering Hypercapnia 728
26.7 Summary and Conclusions 728
References 729
27: Permissive Hypercapnia in Neonates: Specific Experience and Limitations 733
27.1 Introduction 733
27.2 Physiologic Rationale 734
27.2.1 Potential Advantages of Hypercapnia and Hypercapnic Acidosis 734
27.2.2 Potential Disadvantages of Hypercapnic Acidosis 735
27.3 Experimental Research 735
27.3.1 Supportive Data for Hypercapnic Acidosis 735
27.3.2 Neutral or Negative Data for Hypercapnic Acidosis 736
27.4 Clinical Data 737
27.4.1 Neonates with Respiratory Distress but Not Intubated 738
27.4.1.1 Randomized Controlled Trials 739
27.4.2 Neonates with Respiratory Distress on Mechanical Ventilation 742
27.4.2.1 Randomized Controlled Trials 743
Conclusions 743
References 744
Part X: Adjunctive Therapies in Mechanically Ventilated Children and Neonates 748
28: Surfactant 749
28.1 Pulmonary Surfactant and Exogenous Surfactant Therapy in Neonates 749
28.1.1 Introduction 749
28.1.2 Surfactant Composition, Metabolism, Physiology, and Pathophysiology 749
28.1.2.1 Surfactant Composition and Metabolism 749
28.1.2.2 Surfactant Physiology 751
28.1.2.2.1 In the Normal Lung 751
28.1.2.2.2 In the Premature Lung 752
28.1.2.2.3 In the Injured Neonatal Lung 752
28.1.2.2.4 Effect of Mechanical Ventilation on Pulmonary Surfactant 753
28.1.3 Exogenous Surfactant Therapy 753
28.1.3.1 Types of Exogenous Surfactant 753
28.1.3.1.1 Animal-Derived Surfactants 753
28.1.3.1.2 Synthetic Surfactants 754
28.1.3.2 Administration of Exogenous Surfactant: Practical Issues 754
28.1.3.3 Clinical Use of Surfactant Therapy in Preterm Infants with RDS 757
28.1.3.3.1 Efficacy of Surfactant Therapy in Established RDS (Rescue Surfactant Therapy) 757
28.1.3.3.2 Efficacy of Surfactant Therapy in Infants at Risk for RDS (Prophylactic Surfactant) 758
28.1.3.3.3 Prophylactic Versus Rescue Surfactant Therapy 759
28.1.3.3.4 Initial Respiratory Management of Preterm Infants: CPAP Compared to Intubation Followed by Surfactant Administration 760
28.1.3.3.5 The Preterm Infant with Respiratory Distress Syndrome Who Is Not on Mechanical Ventilation 762
28.1.3.3.6 Early Versus Late Treatment of Established RDS 762
28.1.3.3.7 Single Versus Multiple Surfactant Doses 763
28.1.3.3.8 Threshold for Administration of Repeat Doses of Surfactant 764
28.1.3.3.9 Comparisons Between Surfactant Products 764
28.1.3.3.10 Factors Affecting the Response to Surfactant Therapy 767
28.1.3.4 Adverse Effects of Surfactant Therapy 767
28.1.3.5 Long-Term Outcomes After Surfactant Therapy 769
28.1.3.5.1 Neurodevelopmental Outcomes 769
28.1.3.5.2 Long-Term Respiratory Outcomes 769
28.1.3.5.3 Physical Growth 769
28.1.3.5.4 Outcomes of Prophylactic Versus Rescue Treatment Strategies 769
28.1.3.6 Exogenous Surfactant Therapy for Conditions Other than RDS 769
28.1.3.6.1 Meconium Aspiration Syndrome 769
28.1.3.6.2 Acute Respiratory Distress Syndrome 770
28.1.3.6.3 Other Conditions 770
28.1.4 Future Developments 771
28.2 Exogenous Surfactant in the Pediatric Patient 772
28.2.1 Introduction 772
28.2.2 Evidence of Surfactant Dysfunction in ALI/ARDS 773
28.2.3 In Vitro Studies of Surfactant Inhibition 774
28.2.4 Animal Studies of Exogenous Surfactant Therapy In Vivo 775
28.2.5 Pharmaceutical Surfactants 776
28.2.6 Human Studies of Surfactant Therapy for ALI/ARDS 778
Conclusions 782
References 784
29: Selective Pulmonary Vasodilators 796
29.1 Nitric Oxide 796
29.1.1 Nitric Oxide Physiology 796
29.1.1.1 NO Physiology in the Normal Respiratory System 796
29.1.1.2 Developmental Regulation of NO Physiology 797
29.1.1.3 Dysregulation of Nitric Oxide Production and Response in the Diseased Respiratory System 798
General Concepts of NO-cGMP Dysregulation in Pulmonary Vascular Disease 798
Persistent Pulmonary Hypertension 799
Congenital Diaphragmatic Hernia 800
Bronchopulmonary Dysplasia 800
Congenital Heart Disease 800
29.1.2 Inhaled Nitric Oxide 801
29.1.2.1 Delivery Methods and Interactions with Mechanical Ventilation 801
29.1.2.2 Side Effects and Safety Issues 802
29.1.2.3 Indications and Outcome Analysis 803
PPHN 803
Other Neonatal Respiratory Failure 804
Pediatric Respiratory Failure 805
In Primary and Secondary PHT 805
29.2 Nitric Oxide Pathway 806
29.2.1 Nitric Oxide Pathway 806
29.2.2 Phosphodiesterase Inhibitors 807
29.2.2.1 Sildenafil 808
29.2.2.2 Tadalafil 808
29.2.3 Guanylate Cyclase Stimulators 809
29.2.4 Others 809
29.3 Other Pulmonary Vasodilators and Newer Compounds 810
29.3.1 Prostanoids 810
29.3.1.1 Epoprostenol 810
29.3.1.2 Beraprost 811
29.3.1.3 Iloprost 811
29.3.1.4 Treprostinil 812
29.3.2 PDE-3 Inhibitors 813
29.3.3 Endothelin Receptors Antagonists 813
29.3.3.1 Bosentan 814
29.3.3.2 Ambrisentan and Sitaxentan 814
29.3.4 Vasointestinal Peptide 815
References 815
30: Drug Nebulization During Mechanical Ventilation 824
30.1 Aerosol Drug Delivery During Pediatric Mechanical Ventilation 824
30.1.1 Introduction 824
30.1.2 Characteristic and Behavior of Aerosols 826
30.1.3 Factors Affecting Aerosol Delivery During Mechanical Ventilation 828
30.1.3.1 Types of Aerosol Generators Used 828
30.1.3.2 Pneumatic Nebulizers 828
30.1.3.3 Vibrating Mesh Nebulizers 830
30.1.3.4 Metered-Dose Inhalers 830
30.1.3.5 Location of the Aerosol Generator 832
30.1.3.6 Humidification of Inhaled Gas 833
30.1.3.7 Ventilator Settings 834
30.2 Specific Inhalational Treatment 835
30.2.1 Bronchodilator Therapy 835
30.2.1.1 Efficacy and Utilization of Inhaled Bronchodilators 835
30.2.2 Inhaled Selective Pulmonary Vasodilators 837
30.2.3 Inhaled Antibiotic Therapy 838
30.2.3.1 Why Consider Aerosolized Antibiotic Therapy? 838
30.2.3.2 Aerosolized Antibiotics for the Prevention of Ventilator-Associated Pneumonia 839
30.2.3.3 Aerosolized antibiotics for the treatment of VAP 839
30.2.3.4 Considerations in Aerosolizing Antibiotics in Ventilated Patients 840
30.2.3.5 Recommendations for Using Aerosolized Antibiotics in Ventilated Children 840
30.2.4 Inhaled Corticosteroids 841
30.2.4.1 Methods of Delivery 841
30.2.4.2 Efficacy of Methods of Delivery 841
30.2.4.3 Therapeutic Uses of Inhaled Corticosteroids 842
30.2.4.3.1 Reduction in the Need for Ventilatory Support 842
30.2.4.3.1.1 Lung Function 842
30.2.4.3.1.2 Lung Inflammation 842
30.2.4.3.1.3 Time to Extubation 842
30.2.4.3.1.4 Need for Systemic Steroids 842
30.2.4.3.2 Prevention of BPD 842
30.2.4.3.3 Reduction in Post-extubation Stridor and the Need for Reintubation 843
30.2.4.4 Side Effects 843
References 843
31: Use of Potent Inhalational Anesthetic Agents During Mechanical Ventilation 849
31.1 History of the Potent Inhalational Anesthetic Agents 849
31.2 Principles of the Inhalational Anesthetic Agents 850
31.2.1 Chemical Structure 850
31.2.2 Uptake and Distribution 851
31.2.3 Potency (Minimum Alveolar Concentration or MAC) 852
31.3 End-Organ Effects 853
31.3.1 Central Nervous System 853
31.3.2 Airway, Respiratory System, and Control of Ventilation 854
31.3.3 Cardiovascular System and Hemodynamic Effects 855
31.3.4 Hepatic and Renal Function 855
31.3.5 Miscellaneous End-Organ Effects 857
31.4 Applications in the Pediatric ICU Setting 858
31.4.1 Procedural Sedation 858
31.4.2 Sedation During Mechanical Ventilation 859
31.4.3 Treatment of Status Asthmaticus 860
31.4.4 Treatment of Status Epilepticus 861
31.5 Special Aspects of Delivery in the Pediatric ICU Setting 862
31.5.1 Delivery Techniques 862
31.5.2 Environmental Pollution and Scavenging 866
31.5.3 Monitoring During the Delivery of Inhalational Anesthesia 867
31.6 Summary 868
References 869
32: Rational Use of Adjunctive Therapies: Efficacy and Efficiency 872
32.1 In Neonatal Respiratory Failure 872
32.1.1 Antenatal Steroids 872
32.1.2 Surfactant Replacement Therapy 874
32.1.2.1 Comparison of Surfactants 875
32.1.2.2 Status in Developing Countries 876
32.1.2.3 Expanding Use of Surfactant in Newborns 877
32.1.2.4 Meconium Aspiration Syndrome (MAS) 877
32.1.2.5 Late Preterm RDS 878
32.1.2.6 Pneumonia 878
32.1.2.7 Pulmonary Haemorrhage 878
32.1.2.8 Congenital Diaphragmatic Hernia (CDH) 878
32.1.2.9 Chronic Lung Disease 879
32.1.3 Pulmonary Vasodilators 879
32.1.3.1 Inhaled Nitric Oxide (iNO) 879
32.1.3.2 Phosphodiesterase Inhibitors 880
32.1.3.3 Other Drugs for PPHN 880
32.1.3.3.1 Magnesium Sulphate 880
32.1.3.3.2 Milrinone 881
32.1.3.3.3 Adenosine 881
32.1.4 Corticosteroids 881
32.1.4.1 Systemic Steroids 881
32.1.4.1.1 RDS 881
32.1.4.1.2 CLD 882
32.1.4.1.3 Meconium Aspiration Syndrome 882
32.1.4.1.4 Inhaled Steroids for CLD 882
32.1.5 Methylxanthines 882
32.1.5.1 Inhaled CO2 for Apnoea 883
32.1.6 Drugs for Patent Ductus Arteriosus (PDA) Closure 883
32.1.7 Potential Drugs for Prevention and Treatment of BPD 883
32.1.7.1 Vitamin A 883
32.1.7.2 Vitamin E and Antioxidants 884
32.1.7.3 Diuretics 884
32.1.7.4 Beta-Agonists 884
32.1.7.4.1 Other Bronchodilators 884
32.1.7.5 Erythromycin 884
32.1.8 Sedatives and Analgesics 884
32.1.8.1 Opioids 884
32.1.8.2 Midazolam 885
32.1.8.3 Paralytic Agents 885
32.1.8.4 Medications for Intubation 885
32.1.9 Non-pharmacologic Interventions 885
32.2 In Paediatric Respiratory Failure 886
32.2.1 Surfactant 886
32.2.1.1 Acute Respiratory Failure, ALI and ARDS 887
32.2.1.2 RSV and Bronchiolitis 887
32.2.1.3 Other Lung Injury 888
32.2.2 Pulmonary Vasodilators 889
32.2.2.1 Inhaled Nitric Oxide 889
32.2.2.2 Inhaled Vasodilators 890
32.2.3 Heliox 890
32.2.3.1 Asthma 891
32.2.3.2 RSV and Bronchiolitis 891
32.2.3.3 Croup 891
32.2.3.4 Chronic Lung Disease of Prematurity 892
32.2.3.5 Specific Cases 892
32.2.4 Conclusions 892
References 892
Part XI: Complications of Mechanical Ventilation 900
33: Ventilator-Associated Lung Injury 901
33.1 Introduction 901
33.2 Lung Injury in the NICU 902
33.2.1 Predisposing Risk Factors 902
33.2.2 Mechanisms of Lung Injury in the NICU 903
33.2.2.1 Mechanical Ventilation: Barotrauma, Volutrauma, and Atelectrauma 904
33.2.2.2 Oxygen Therapy 904
33.2.2.3 Inflammation 905
33.2.2.4 Immediate Consequences of Lung Injury 905
33.2.3 Treatment Options for Lung Protection 906
33.2.4 Practical Measures to Reduce the Likelihood of VILI in Neonatal Patients, e.g., to Prevent BPD 906
33.2.4.1 Predisposing Factors 906
33.2.4.2 Prevention of Mechanical Ventilation-­Induced Lung Injury 907
33.2.4.2.1 Antenatal Steroid Therapy 907
33.2.4.2.2 Respiratory Support in the Delivery Room 907
33.2.4.2.3 Exogenous Surfactants 907
33.2.4.2.4 Ventilatory Modes 908
33.2.4.3 Oxygen Administration 908
33.2.4.4 Anti-inflammatory Agents 909
33.2.4.4.1 Nonsteroidal Anti-inflammatory Therapy 909
33.2.4.4.2 Steroid Therapy 909
33.2.4.5 Other Proposed Preventive Treatments 909
33.2.4.5.1 Nitric Oxide 909
33.2.4.5.2 Closure of Ductus Arteriosus 910
33.2.4.5.3 Fluid Restriction and Diuretics 910
33.2.4.5.4 Vitamin A 910
33.2.4.5.5 Caffeine 911
Conclusion 911
33.3 Ventilator-Associated Lung Injury in the PICU 911
33.3.1 Mechanisms of VILI 911
33.3.1.1 Physical Injury 911
33.3.1.1.1 Baro- and Volutrauma 911
33.3.1.1.2 Atelectrauma 912
33.3.1.1.3 Oxygen Toxicity 913
33.3.1.2 Inflammatory Response to Stretch: The Biotrauma Hypothesis 913
33.3.1.2.1 Inflammatory Cytokines 913
33.3.1.2.2 Coagulation Factors 914
33.3.1.2.3 Hormones 914
33.3.1.2.4 Lipid-Derived Mediators 915
33.3.1.2.5 Oxidants 915
33.3.1.3 Cellular and Matrix Response to Stress 915
33.3.2 Clinical Presentation 917
33.3.3 Etiology and Predisposing Factors 918
33.3.4 Prevention and Management of VILI 919
33.3.4.1 Conventional Mechanical Ventilation 919
33.3.4.1.1 Low Tidal Volume 919
33.3.4.1.2 Limiting Airway Pressure 919
33.3.4.1.3 Oxygen 919
33.3.4.1.4 Positive End-Expiratory Pressure 919
33.3.4.1.5 The “Baby Lung” 920
33.3.4.2 High-Frequency Oscillation Ventilation 920
33.3.4.3 Permissive Hypercapnia 920
33.3.4.4 Pharmacologic Intervention 920
33.3.5 VILI in the Future 921
References 921
34: Gross Air Leaks 930
34.1 Pathophysiologic Mechanisms of Airway and Alveolar Rupture 930
34.1.1 Pathophysiology 930
34.1.2 Consequences of Air Leaks 931
34.2 Incidence and Risk Factors 931
34.3 Clinical Manifestations 933
34.3.1 Pulmonary Interstitial Emphysema 933
34.3.2 Pneumothorax 933
34.3.3 Pneumomediastinum 935
34.3.4 Pneumopericardium 935
34.3.5 Pneumoperitoneum 936
34.3.6 Systemic Air Embolism 936
34.3.7 Subcutaneous Emphysema 937
34.4 Management and Treatment Options 937
34.4.1 Pulmonary Interstitial Emphysema 937
34.4.1.1 Generalized PIE 937
34.4.1.2 Localized PIE 937
34.4.2 Pneumothorax 937
34.4.3 Pneumomediastinum 938
34.4.4 Pneumopericardium 939
34.4.5 Pneumoperitoneum 939
34.4.6 Systemic Air Embolism 939
34.5 Practical Measures to Reduce the Likelihood of Air Leaks in Ventilated Patients 939
References 940
35: Infectious Complications in Mechanically Ventilated Patients 944
35.1 Ventilator-Associated Pneumonia (VAP) 944
35.1.1 Epidemiology of VAP 944
35.1.1.1 Incidence in Adult Intensive Care 944
35.1.1.2 Incidence in Pediatric Intensive Care 944
35.1.1.3 Outcomes of VAP in Adult and Pediatric Intensive Care 945
35.1.2 Predisposing Factors for VAP 946
35.1.2.1 Nonmodifiable Predisposing Factors for VAP in Adult Intensive Care 946
35.1.2.2 Modifiable Predisposing Factors for VAP in Adult Intensive Care 946
35.1.2.3 Predisposing Factors for VAP in Pediatric Intensive Care 946
35.1.3 Pathogenesis of VAP 947
35.1.3.1 Colonization of the Oropharynx, Tracheobronchial Tree, and Stomach 947
35.1.3.2 Microbiologic Epidemiology of VAP in Adult and Pediatric Intensive Care 947
35.1.4 Diagnosis of VAP 948
35.1.4.1 Diagnosis of VAP in Adult Intensive Care 948
35.1.4.1.1 Histologic Diagnosis of VAP 949
35.1.4.1.2 Reproducibility of BAL and PSB to Diagnose VAP in Adult Intensive Care 950
35.1.4.1.3 The Clinical Pulmonary Infection Score for Diagnosis of VAP 950
35.1.4.2 Diagnosis of VAP in Pediatric Intensive Care 951
35.1.5 Treatment of VAP 952
35.1.5.1 General Considerations for Treating VAP 952
35.1.5.2 Antibiotic Considerations for Treating VAP 954
35.1.5.3 Strategies for Diagnosis and Treatment of VAP in Adult Intensive Care 955
35.1.5.4 A Suggested Strategy for Diagnosis and Treatment of VAP in Children 955
35.1.6 Prevention of VAP 956
35.2 Sinus Infections in the Intensive Care Unit 958
35.2.1 Epidemiology of VAS 958
35.2.2 Diagnosis and Treatment of VAS 959
References 960
36: Post-extubation Stridor 964
36.1 Introduction 964
36.2 Anatomical Considerations of the Pediatric Airway 965
36.2.1 Selection of an Appropriate Endotracheal Tube 965
36.3 Risk Factors for Post-­extubation Stridor 966
36.3.1 Age 966
36.3.2 Length of Intubation 966
36.3.3 Neurologic Dysfunction 966
36.3.4 “Air Leak Test” 967
36.3.5 “Cuff Leak Volume” 967
36.3.6 Other Risk Factors 968
36.4 Manifestations of Post-­extubation Upper Airway Obstruction 968
36.4.1 Clinical Signs and Symptoms 968
36.5 Quantifying the Degree and Location of Airway Obstruction 969
36.5.1 Pulsus Paradoxus 969
36.5.2 Spirometry: Flow Versus Volume Loops 969
36.5.3 Esophageal Manometry 970
36.5.4 Respiratory Inductance Plethysmography 971
36.5.5 Endoscopy 972
36.6 Treatment and Prevention 973
36.6.1 Racemic Epinephrine 973
36.6.2 Heliox 974
36.6.3 Noninvasive PPV 975
36.6.4 Reintubation 975
36.6.5 Corticosteroids 975
36.7 Long-Term Complications of Endotracheal Intubation 976
References 977
Part XII: Bronchoscopy in Pediatric and Neonatal Intensive Care 981
37: Bronchoscopy in Pediatric and Neonatal Intensive Care 982
37.1 Introduction 982
37.2 Physiological Effects and Complications of Bronchoscopy 982
37.3 Technical and Practical Aspects of Bronchoscopy in Ventilated Patients 984
37.3.1 Equipment 984
37.3.2 Safety (Prerequisites) and Monitoring 984
37.3.3 Sedation and Analgesia 984
37.4 Indications for Bronchoscopy in the NICU/ PICU 985
37.4.1 Diagnostic Indications 985
37.4.1.1 Patency and Position of Endotracheal Tubes 985
37.4.1.2 Evaluation of Tracheostomy 985
37.4.1.3 Assessment of the Upper Airway (e.g., Pre- and Postintubation, Upper Airway Obstruction, Smoke Inhalation, Burn Injury) 985
37.4.1.4 Assessment of the Lower Airway (Trauma, Anastomosis, Malformations, Malacia, Tracheostomy, Tracheoesophageal Fistula (TEF), Stent Assessment) 986
37.4.1.5 Pneumonia (BAL in VAP, Immunocompromised Host) 987
37.4.1.6 Hemoptysis and Pulmonary Hemorrhage 988
37.4.2 Therapeutic Indications 989
37.4.2.1 Endobronchial Toilet (Assessment of Lobar Collapse) 989
37.4.2.2 Selective Intubation 989
37.4.2.3 Whole Lung Lavage 990
37.4.2.4 Percutaneous Dilatational Tracheostomy 991
37.4.2.5 Foreign Body Removal 991
37.4.2.6 Tracheobronchial Stent Placement 991
37.4.2.7 Hemoptysis and Pulmonary Hemorrhage (For Diagnostic Considerations, See Sect. 4.1.6) 992
37.5 Summary 992
References 993
Part XIII: Sedation, Antalgesia and Neuromuscular Blockade During Mechanical Ventilation 997
38: Sedation, Analgesia and Neuromuscular Blockade in the Neonatal ICU 998
38.1 Pain Control 998
38.1.1 Indications 999
38.1.2 Choice of Drug 999
38.1.2.1 Morphine 1000
38.1.2.2 Fentanyl 1000
38.1.2.3 Other Drugs 1000
38.1.3 Assessing Adequacy 1000
38.1.4 Drug Weaning 1001
38.1.5 Toxicity and Side Effects 1001
38.2 Sedation 1002
38.2.1 Opioids 1002
38.2.2 Benzodiazepines 1002
38.2.3 Indications 1002
38.2.4 Choice of Drug 1002
38.2.5 Assessing Adequacy 1002
38.2.6 Drug Weaning 1003
38.2.7 Toxicity and Side Effects 1003
38.3 Neuromuscular Blockade 1003
38.3.1 Indications 1003
38.3.2 Choice of Drug 1004
38.3.3 Assessing Adequacy 1004
38.3.4 Drug Weaning 1005
38.3.5 Toxicity and Side Effects 1005
38.4 Important Unknowns 1005
References 1006
39: Sedation, Analgesia and Neuromuscular Blockade in the Paediatric ICU 1009
39.1 Introduction 1009
39.2 Pain Control 1010
39.2.1 Indications 1010
39.2.2 Choice of Drug 1011
39.2.2.1 Opioids 1011
39.2.2.1.1 Morphine 1013
39.2.2.1.2 Fentanyl 1014
39.2.2.1.3 Alfentanil 1014
39.2.2.1.4 Remifentanil 1014
39.2.2.1.5 Codeine Phosphate 1015
39.2.2.1.6 Tramadol 1015
39.2.2.2 Non-opioid Analgesics 1015
39.2.2.2.1 ?-2 Adrenoceptor Agonists 1016
39.2.2.2.1.1 Clonidine 1016
39.2.2.2.1.2 Dexmedetomidine 1017
39.2.2.2.2 Non-competitive NMDA Receptor Antagonist 1017
39.2.2.2.2.1 Ketamine 1017
39.2.2.2.3 Nonsteroidal Anti-inflammatory Drugs (NSAIDs) 1017
39.2.2.2.4 Paracetamol 1017
39.2.2.2.5 Local Analgesia Techniques 1018
39.3 Sedation 1018
39.3.1 Indications 1018
39.3.2 Choice of Drug 1019
39.3.2.1 Benzodiazepines 1019
39.3.2.1.1 Midazolam 1019
39.3.2.1.2 Diazepam 1019
39.3.2.1.3 Lorazepam 1020
39.3.2.2 Propofol 1020
39.3.2.3 Chloral Hydrate 1021
39.3.2.4 Phenothiazines 1021
39.3.2.4.1 Chlorpromazine 1022
39.3.2.4.2 Alimemazine (Trimeprazine) 1022
39.3.2.4.3 Promethazine Hydrochloride 1022
39.3.2.5 Butyrophenones 1022
39.3.2.5.1 Haloperidol 1022
39.3.2.6 Clonidine 1023
39.3.2.7 Volatile Agents 1023
39.3.2.7.1 Isoflurane, Sevoflurane, Halothane and Desflurane 1023
39.3.2.7.2 Xenon 1024
39.3.3 Non-pharmacological Measures 1024
39.3.3.1 Developmental Care 1024
39.3.3.2 Sugar 1024
39.3.3.3 Nesting 1024
39.3.3.4 Melatonin 1024
39.3.4 Assessing Adequacy of Analgosedation 1024
39.3.4.1 Observational Measures 1024
39.3.4.1.1 COMFORT Score 1025
39.3.4.2 Objective Measures 1025
39.3.4.2.1 Electrophysiological Measures 1025
39.3.4.2.1.1 Bispectral Index (BIS)/Auditory Evoked Potentials (AEPs)/Somatosensory Potentials (SSEPS) 1025
39.3.4.2.2 Skin Resistivity 1026
39.3.5 Drug Weaning 1026
39.3.5.1 Drug Holidays and Other Strategies 1026
39.3.6 Toxicity and Side Effects 1027
39.4 Neuromuscular Blockade 1027
39.4.1 Indications 1027
39.4.2 Choice of Drug 1028
39.4.2.1 Vecuronium 1028
39.4.2.2 Pancuronium 1028
39.4.2.3 Atracurium 1028
39.4.2.4 Cisatracurium 1028
39.4.2.5 Rocuronium 1029
39.4.2.6 Suxamethonium 1029
39.4.3 Assessing Adequacy 1030
39.4.3.1 Train-of-Four (TOF) Monitoring 1030
39.4.4 Drug Weaning 1030
39.4.5 Toxicity and Side Effects 1031
39.5 Important Unknowns 1031
39.5.1 The Current Dilemmas in Paediatric Practice 1031
39.5.1.1 Immune Response to Anaesthetic Agents 1031
39.5.1.2 Apoptosis and Neurotoxicity 1032
References 1033
Part XIV: A Practical Approach to Noninvasive Mechanical Ventilation 1038
40: Noninvasive Respiratory Support in the Neonate 1039
40.1 Nasal Respiratory Support: Introduction 1039
40.1.1 Initiating Nasal Respiratory Support (NRS) 1039
40.1.1.1 Nasal Continuous Positive Airway Pressure (NCPAP) 1039
40.1.1.2 Nasal Intermittent Mandatory Ventilation (NIMV) 1040
40.1.1.3 Nasal Flow 1041
40.1.2 Ventilator Settings Adjustments During NRS Therapy 1041
40.1.2.1 Nasal Continuous Positive Airway Pressure (NCPAP) 1041
40.1.2.2 Nasal Intermittent Mandatory Ventilation (NIMV) 1041
40.1.2.3 Nasal Flow 1042
40.1.3 NRS Failure Criteria 1042
40.1.4 NRS Side Effects 1042
40.1.4.1 Short-Term Side Effects 1042
40.1.4.2 Long-Term Side Effects 1043
40.1.5 Practical Hints for Neonatal NRS Application 1044
40.2 Weaning from Noninvasive Respiratory Support in the Premature Infant 1045
References 1046
41: Noninvasive Respiratory Support in the Paediatric Patient 1048
41.1 Continuous Positive Airway Pressure 1048
41.1.1 Indications 1048
41.1.2 Initiating CPAP 1050
41.1.3 Airway Pressure Adjustments During CPAP Therapy 1052
41.1.4 CPAP Failure Criteria 1052
41.1.5 Undesired Side Effects 1053
41.1.6 Practical Hints for CPAP Applications 1054
41.2 Noninvasive Positive Pressure Ventilation 1054
41.2.1 Indications 1054
41.2.2 Initiating Noninvasive Positive Pressure Ventilation 1056
41.2.3 Airway Pressure Settings and Adjustments During NPPV Therapy 1058
41.2.4 NPPV Failure Criteria 1059
41.2.5 Undesired Side Effects 1059
41.2.6 Conclusion 1059
41.3 Adjunctive Therapies During CPAP or NIPPV 1061
41.3.1 Noninvasive Ventilation with Helium-Oxygen Mixture 1061
41.3.2 Use of Helium-Oxygen Mixtures 1061
41.3.2.1 Properties of Heliox 1061
41.3.2.2 Clinical Applications of Heliox 1062
41.3.2.2.1 Heliox Therapy in the Spontaneously Breathing Infant 1062
41.3.2.2.2 Heliox as Nebulisation Source 1063
41.3.2.2.3 Heliox Therapy in the Intubated Child 1063
41.3.2.3 Rationale for Using Heliox in Noninvasive Ventilation and Clinical Experience 1063
41.3.2.4 Indications of Noninvasive Ventilation with Heliox in Paediatric Patients 1064
41.3.2.5 Protocol for Using Heliox with Noninvasive Ventilation 1065
41.3.2.5.1 Equipment Designed for Heliox Delivery 1065
41.3.2.5.2 Equipment Adapted for Heliox Delivery 1066
41.3.2.5.2.1 Pre-dilution Connection 1067
41.3.2.5.2.2 Post-dilution Connection 1067
41.3.2.5.2.3 Heliox with High Flow Nasal Cannula 1068
41.3.2.6 Side Effects and Drawbacks 1068
41.3.2.6.1 Side Effects 1068
41.3.2.6.1.1 Hypoxaemia 1068
41.3.2.6.1.2 Hypothermia 1068
41.3.2.6.2 Drawbacks 1068
41.3.2.6.2.1 Cost 1068
41.3.2.6.2.2 Technical Difficulties 1068
References 1069
Adjunctive Therapies During CPAP or NIPPV 1071
Part XV: Practical Evidence-Based and Goal-­Directed Approach to Conventional Mechanical Ventilation 1073
42: Setting the Ventilator in the NICU 1074
42.1 Introduction 1074
42.2 Choosing the Ventilator Mode 1074
42.3 First Settings 1079
42.3.1 Assessment After Going onto the Ventilator 1080
42.3.2 Monitoring and Documentation During Mechanical Ventilation 1081
42.4 Ventilator Settings and Strategies: Pathophysiological Rationale, Meta-analytic Evidence and Therapeutic End Points 1083
42.4.1 Manipulating End-Expiratory Lung Volume 1083
42.4.1.1 Relationships Between PEEP, EELV and Recruitment 1084
42.4.1.2 Guiding Principles for PEEP Setting in the Neonate 1086
42.4.2 Inspiratory Time 1087
42.4.3 Choosing the Appropriate Tidal Volume 1088
42.4.3.1 Physiological Rationale for Targeting Tidal Volume 1088
42.4.3.2 What Is the Safe Upper Limit of VT in the Ventilated Neonate? 1089
42.4.3.3 What Is the Safe Lower Limit of VT in the Ventilated Neonate? 1089
42.4.4 Respiratory Rate 1089
42.4.5 Fractional Inspired Oxygen Concentration 1090
42.5 Acceptable Oxygen Saturation in Premature Infants 1091
42.5.1 What Is the Safe Upper Limit for SpO2 in the Preterm Infant? 1091
42.5.2 What Is the Safe Lower Limit for SpO2 in the Preterm Infant? 1092
42.6 Safe CO2 Limits 1092
References 1094
43: Setting the Ventilator in the PICU 1099
43.1 Introduction 1099
43.2 Mode of Invasive Mechanical Ventilation 1101
43.3 Tidal Volume 1102
43.4 Positive End-Expiratory Pressure 1103
43.5 Inspiratory Flow Pattern 1105
43.6 Triggering 1105
43.7 Inspired Oxygen Concentration 1105
43.8 Ventilatory Frequency 1106
43.9 Inspiratory Time 1106
43.10 Gas Exchange Parameters and Assessing the Adequacy of Mechanical Ventilation 1106
43.11 Influence of Maintaining Spontaneous Breathing During Mechanical Ventilation 1108
43.12 Special Populations 1109
43.12.1 Small Airways Disease 1109
43.12.2 Postoperative Cardiac Patients 1109
43.12.2.1 Right Ventricular Dysfunction 1110
43.12.2.2 Left Ventricular Dysfunction 1110
Conclusions 1110
References 1111
44: Approaches to Adverse Patient-­Ventilator Interactions 1115
44.1 Assessing Patient-Ventilator Interactions 1115
44.2 Respiratory Alkalosis/ Acidosis: Alveolar Ventilation 1117
44.2.1 Increased Ventilatory Requirements 1117
44.2.2 Respiratory Acidosis 1118
44.2.3 Respiratory Alkalosis 1118
44.3 Patient-Ventilator Dys-synchrony 1119
44.3.1 Patient-Ventilator Interactions 1119
44.3.2 Trigger Dys-synchrony 1119
44.3.3 Flow Dys-synchrony 1120
44.4 Optimizing PEEP 1121
44.4.1 Acute Lung Injury 1121
44.4.2 Ventilation-Perfusion Mismatch 1123
44.5 Airway Obstruction 1123
44.5.1 Flow-Volume Loops Demonstrating Airway Obstruction 1123
44.6 Dynamic Hyperinflation 1124
44.6.1 Detection of Overdistension Using Pressure-Volume Loops 1124
44.6.2 Dynamic Hyperinflation and Intrinsic PEEP 1125
44.6.3 Airway Graphics: Summary 1126
44.7 Patient-Ventilator Interactions in the Hemodynamically Unstable Patient 1126
44.7.1 Implications for Patients with Congenital Heart Disease 1126
44.7.2 Cardiopulmonary Interactions of the Right Ventricle 1126
44.7.3 Left Ventricular Interactions 1127
44.8 Overall Approach to the Hemodynamically Unstable Patient 1128
Conclusions 1128
References 1129
Part XVI: Practical Goal-Directed Approach to Nonconventional Mechanical Ventilation 1130
45: High-Frequency Oscillatory Ventilation in the Neonate 1131
45.1 Initiating HFOV in Neonatal Respiratory Failure 1131
45.1.1 Indication and General Considerations 1131
45.1.2 Initial Settings on HFOV 1132
45.1.3 Adjusting Ventilator Settings During HFOV 1133
45.1.4 Respiratory Monitoring During HFOV 1134
45.1.5 The Use of HFOV in Various Pulmonary Pathologies of the Newborn 1134
45.1.5.1 Infant Respiratory Distress Syndrome (iRDS) 1134
45.1.5.2 Meconium Aspiration Syndrome (MAS) 1135
45.1.5.3 Lung Hypoplasia 1136
45.1.5.4 Air-Leak Syndromes 1136
45.1.6 Weaning from HFOV 1137
45.2 Paediatric HFOV 1138
45.2.1 Initial Ventilator Settings During High-Frequency Ventilation 1138
45.2.2 Management of Gas Exchange During High-Frequency Ventilation 1138
45.2.2.1 Mean Airway Pressure, Endotracheal Tube Size and I/E Ratio 1138
45.2.2.2 Alveolar Ventilation and the Interaction of Rate and Tidal Volume 1139
45.2.2.3 Delivered Tidal Volumes and the Effect of Respiratory Frequency on Tidal Volumes During HFOV 1139
45.2.2.4 Effect of an Endotracheal Tube Leak on CO2 Clearance 1140
45.2.3 Transitioning from HFOV to Conventional Ventilation 1140
References 1141
46: High-Frequency Jet Ventilation (HFJV) 1143
46.1 General Principles 1143
46.1.1 Important Points in the Use of HFJV 1143
46.1.2 The Importance of Servo Pressure 1144
46.1.3 Suctioning During HFJV 1144
46.1.4 Detecting Inadvertent PEEP 1144
46.1.5 Weaning HFJV 1145
46.2 Management of Patients with Specific Pathophysiologies 1145
46.2.1 Uniform, Atelectatic Lung Disease 1145
46.2.1.1 Rescue HFJV in Infants with Atelectatic Lung Disease 1145
46.2.1.2 Elective Use of HFJV in Atelectatic Lung Disease 1146
46.2.2 Air Leak Syndrome 1147
46.2.3 Severe Nonuniform Lung Disease/PPHN 1148
46.2.4 Bronchopulmonary Dysplasia 1149
46.2.5 Restrictive Disease 1150
46.2.6 Pulmonary Hypoplasia 1150
Conclusion 1150
References 1151
Part XVII: Mechanical Ventilation in Various Pulmonary Pathologies 1152
47: Acute Neonatal Respiratory Failure 1153
47.1 Introduction and Definitions 1153
47.2 Pulmonary Pathologies in the Neonate Leading to Respiratory Failure 1154
47.2.1 Infant Respiratory Distress Syndrome 1154
47.2.1.1 Pathophysiology of RDS 1154
47.2.1.1.1 Lung Development 1154
47.2.1.1.2 Transition 1154
47.2.1.1.3 Physiology 1155
47.2.1.1.4 Histology 1155
47.2.1.1.5 Clinical Picture 1155
47.2.1.2 Lung Mechanics of RDS 1156
47.2.1.2.1 FRC and Physiological Dead Space 1156
47.2.1.2.2 Time Constant, Compliance and Resistance 1156
47.2.1.2.3 Gas Exchange and Shunting 1156
47.2.1.3 Epidemiology of RDS 1157
47.2.1.3.1 Prevention of RDS 1157
47.2.1.3.2 Antenatal Steroids 1157
47.2.1.4 Incidence of RDS 1158
47.2.1.5 Risk Factors for RDS 1158
47.2.1.5.1 Gestation 1158
47.2.1.5.2 Maternal Factors 1158
47.2.1.5.3 Fetal Factors 1158
47.2.1.5.4 Delivery Factors 1159
47.2.1.6 Stepwise Approach to Respiratory Support for RDS 1159
47.2.1.6.1 Delivery Room Management 1159
47.2.1.6.2 General Management 1160
47.2.1.6.3 Supplemental Oxygen 1160
47.2.1.6.4 Continuous Positive Airway Pressure 1160
47.2.1.6.4.1 Generating CPAP Pressure 1161
47.2.1.6.4.2 Nasal Interface During CPAP 1161
47.2.1.6.4.3 Indications for CPAP: Delivery Room and Early CPAP 1162
47.2.1.6.4.4 Indication for CPAP: Post-extubation 1162
47.2.1.6.4.5 Optimal CPAP Pressure 1162
47.2.1.6.4.6 CPAP Complications 1163
47.2.1.6.5 INSURE Technique 1163
47.2.1.6.6 High-Flow Humidified Nasal Cannula Oxygen Delivery 1164
47.2.1.6.7 Non-invasive Ventilation: Nasal Intermittent Positive Pressure Ventilation (NIPPV) 1165
47.2.1.6.7.1 Evolution of NIPPV 1166
47.2.1.6.7.2 NIPPV Delivery 1166
47.2.1.6.7.3 Indications for NIPPV Use 1166
47.2.1.6.7.4 NIPPV Complications 1167
47.2.1.6.7.5 Future Directions for NIPPV 1167
47.2.1.6.8 Ventilation 1167
47.2.1.6.8.1 Conventional Ventilation 1167
47.2.1.6.8.2 Triggered Ventilation 1167
47.2.1.6.8.3 Volume-Targeted Ventilation (VTV) 1168
47.2.1.6.8.4 Newer Modes of Conventional Ventilation 1168
47.2.1.6.9 High-Frequency Oscillatory Ventilation (HFOV) 1169
47.2.1.6.10 High-Frequency Jet Ventilation (HFJV) 1170
47.2.1.6.11 Extracorporeal Membrane Oxygenation (ECMO) 1170
47.2.1.6.12 Partial Liquid Ventilation (PLV) 1170
47.2.1.6.13 Weaning from Respiratory Support 1170
47.2.1.6.14 Summary of Respiratory Support 1171
47.2.1.7 Rationale for Using Adjunctive Therapies During CPAP or Mechanical Ventilation for RDS 1171
47.2.1.7.1 Exogenous Surfactant 1171
47.2.1.7.1.1 Structure and Function of Surfactant 1171
47.2.1.7.1.2 Surfactant Preparations 1171
47.2.1.7.1.3 Timing of First Surfactant Dose 1172
47.2.1.7.1.4 Dose of Surfactant 1172
47.2.1.7.1.5 Mode of Surfactant Delivery 1172
47.2.1.7.1.6 Adverse Events During Surfactant Delivery 1172
47.2.1.7.1.7 Nonresponders to Surfactant 1173
47.2.1.7.1.8 Surfactant Conclusion 1173
47.2.1.7.2 Inhaled Nitric Oxide 1173
47.2.1.7.3 Antibiotics 1173
47.2.1.7.4 Methylxanthines 1173
47.2.1.7.5 Heliox 1173
47.2.1.7.6 Diuretics 1173
47.2.1.7.7 Analgesia, Sedation and Neuromuscular Paralysis 1174
47.2.1.8 Classical Complications of RDS 1174
47.2.1.9 Short- and Long-Term Outcome of RDS 1175
47.2.1.9.1 Survival 1175
47.2.1.9.2 Bronchopulmonary Dysplasia: Chronic Lung Disease 1175
47.2.1.9.3 Neurological Outcome 1175
47.2.1.10 Conclusions 1176
47.2.2 Neonatal Pneumonia 1176
47.2.2.1 Pathophysiology 1177
47.2.2.1.1 Host Defences of the Newborn 1177
47.2.2.1.2 Pathology 1177
47.2.2.2 Lung Mechanics 1177
47.2.2.3 Epidemiology 1178
47.2.2.3.1 Early Onset Pneumonia 1178
47.2.2.3.2 Late-Onset Pneumonia 1178
47.2.2.3.3 Factors Associated with Increased Risk 1178
47.2.2.4 Incidence 1178
47.2.2.5 Risk Factors 1179
47.2.2.5.1 Early Onset Pneumonia 1179
47.2.2.5.2 Late-Onset Pneumonia 1179
47.2.2.6 Stepwise Approach to Respiratory Support 1179
47.2.2.6.1 Basic Principles 1179
47.2.2.6.2 Non-invasive Support 1179
47.2.2.6.3 Invasive Support 1180
47.2.2.6.3.1 PEEP and Tidal Volume 1180
47.2.2.6.3.2 High-Frequency Oscillatory Ventilation and Nitric Oxide 1180
47.2.2.6.3.3 Exogenous Surfactant Therapy 1180
47.2.2.7 Short- and Long-Term Outcomes 1181
47.2.2.8 Conclusions 1181
47.2.3 Meconium Aspiration Syndrome 1182
47.2.3.1 Introduction 1182
47.2.3.2 Pathophysiology 1182
47.2.3.3 Lung Mechanics and Functional Residual Capacity 1184
47.2.3.4 Epidemiology 1186
47.2.3.5 Incidence 1186
47.2.3.6 Risk Factors 1186
47.2.3.7 Stepwise Approach to Respiratory Support 1186
47.2.3.7.1 Oxygen Therapy 1186
47.2.3.7.2 Continuous Positive Airway Pressure (CPAP) 1187
47.2.3.7.3 Intubation 1187
47.2.3.7.4 Conventional Mechanical Ventilation 1188
47.2.3.7.4.1 Choosing a Mode of Ventilation 1188
47.2.3.7.4.2 Selection of Positive End-Expiratory Pressure 1188
47.2.3.7.4.3 Selection of Inspiratory Time 1188
47.2.3.7.4.4 Selection of Peak Inspiratory Pressure (or Tidal Volume) 1188
47.2.3.7.4.5 Selection of Ventilator Rate 1188
47.2.3.7.5 High-Frequency Oscillatory Ventilation 1189
47.2.3.7.6 High-Frequency Jet Ventilation 1189
47.2.3.8 Rationale for Using Adjunctive Therapies 1190
47.2.3.8.1 Bolus Surfactant Therapy 1190
47.2.3.8.2 Lavage Therapy 1190
47.2.3.8.3 Corticosteroid Therapy 1190
47.2.3.8.4 Inhaled Nitric Oxide 1190
47.2.3.8.5 Extracorporeal Membrane Oxygenation 1190
47.2.3.9 Classical Complications 1191
47.2.3.9.1 Air Leak 1191
47.2.3.9.2 Pulmonary Haemorrhage 1191
47.2.3.9.3 Chronic Lung Disease 1191
47.2.3.9.4 Comorbidities 1191
47.2.3.10 Short- and Long-Term Outcome 1192
47.2.3.10.1 Mortality 1192
47.2.3.10.2 Duration of Ventilation, Oxygen and Hospitalisation 1192
47.2.3.10.3 Long-Term Outcome 1192
47.2.4 Congenital Diaphragmatic Hernia 1192
47.2.4.1 Introduction 1193
47.2.4.2 Epidemiology 1193
47.2.4.3 Delivery Room Resuscitation and Stabilisation 1194
47.2.4.4 Contemporary Intensive Care Management: CDH as a Cardiopulmonary Disease 1194
47.2.4.5 Pre- and Postoperative Ventilation 1194
47.2.4.6 Surgical Repair and Thoracic Compliance in CDH 1195
47.2.4.7 Pulmonary Vascular Management 1196
47.2.4.8 Extracorporeal Membrane Oxygenation 1198
47.2.4.9 Outcome and Long-­Term Follow-Up 1199
47.2.4.10 Summary 1200
Outline of Principles of Management 1201
47.3 Respiratory Failure of Non-­pulmonary Origin 1201
47.3.1 Apnoea of Prematurity 1201
47.3.1.1 Introduction 1202
47.3.1.1.1 Breathing, Central Control and Fetal Development 1202
47.3.1.1.2 Apnoea, Breathing and Apnoea: A Spectrum of Homoeostasis and Limits 1203
47.3.1.2 Apnoea of Prematurity 1203
47.3.1.2.1 Definition and Types of Apnoea 1203
47.3.1.2.2 Pathophysiology 1204
47.3.1.2.2.1 Central Circuitry and Output Determinants 1204
47.3.1.2.2.2 Central Responses to Blood Gases and Apnoea of Prematurity 1205
47.3.1.2.2.3 Sinus Arrhythmia and Reflex Bradycardia 1206
47.3.1.2.2.4 Motor Responses to Chest Wall and Airway Inputs 1206
47.3.1.2.2.5 Upper Airway Protective and Exaggerated Interactive Central Responses 1207
47.3.1.2.3 Clinical Aspects 1207
47.3.1.2.3.1 Presentation and Differential Diagnosis 1207
47.3.1.2.3.2 Therapy 1207
47.3.1.2.3.3 Natural History/Discharge/Home Monitoring 1210
47.3.1.2.3.4 Prognosis/Follow-Up 1211
References 1212
48: Chronic Respiratory Failure in Neonates 1234
48.1 Bronchopulmonary Dysplasia 1234
48.1.1 Clinical Presentation 1234
48.1.2 Definition 1235
48.1.2.1 Prediction of Outcome 1238
48.1.2.2 Physiologic Definition 1238
48.1.3 General Management of the Infant with BPD 1239
48.1.3.1 Fluid Management and Diuretics 1239
48.1.3.2 Bronchodilators 1239
48.1.3.3 Anti-inflammatory Drugs/Corticosteroids 1240
48.1.3.4 Pulmonary Vasodilators 1240
48.1.3.5 Nutrition 1240
48.1.4 Respiratory Care in the Infant with BPD 1241
48.1.4.1 Oxygen Therapy 1241
48.1.4.2 Mechanical Ventilation 1241
References 1242
49: Pediatric Acute Lung Injury 1245
49.1 Definition 1245
49.2 Pathophysiology 1245
49.3 Lung Mechanics 1247
49.4 Epidemiology 1247
49.5 Risk Factors 1248
49.6 Clinical Relevant Outcomes in Trials 1248
49.7 Clinical Management of Acute Hypoxic Respiratory Failure 1248
49.8 Adjunctive Therapies 1251
49.9 Mechanical Ventilation Failure 1251
49.10 General Supportive Care 1251
49.11 Future Directions 1252
References 1254
50: Bronchiolitis 1257
50.1 Introduction 1257
50.2 Typical Features of Bronchiolitis and General Supportive Measures 1257
50.3 Respiratory Failure in Bronchiolitis 1258
50.3.1 Patterns of Disease Requiring Mechanical Ventilation 1258
50.3.2 Blood Gases and Respiratory Failure 1259
50.3.3 Lung Function and Mechanics in Bronchiolitis 1261
50.4 Respiratory Support for Bronchiolitis 1262
50.4.1 Noninvasive Respiratory Support 1263
50.4.2 Heated Humidified High-Flow Nasal Cannulae 1263
50.4.3 Nasal CPAP 1264
50.4.4 BIPAP 1264
50.5 Invasive Conventional Mechanical Ventilation 1264
50.5.1 Initial Settings for Mechanical Ventilation 1264
50.5.2 Positive End-Expiratory Pressure 1267
50.5.3 Airway Obstruction in Mechanically Ventilated RSV Bronchiolitis 1268
50.5.4 Weaning from Mechanical Ventilation 1269
50.6 Acute Respiratory Distress Syndrome and RSV 1270
50.6.1 Permissive Hypercapnia 1271
50.6.2 High-Frequency Oscillatory Ventilation 1272
50.6.3 Extracorporeal Membrane Oxygenation 1272
50.7 Other Lung-Directed Therapies 1273
50.7.1 Helium-Oxygen Gas Mixtures 1273
50.7.2 Surfactant Therapy 1274
50.7.3 Inhaled Nitric Oxide 1274
References 1275
51: Pediatric Asthma 1278
51.1 Introduction 1278
51.2 Severity Assessment 1279
51.2.1 Changes in Pulmonary Mechanics 1279
51.2.2 Assessment of Children with Acute Asthma 1280
51.3 Noninvasive Respiratory Support 1281
51.4 Invasive Mechanical Ventilation 1282
51.4.1 Strategies for Intubation 1282
51.4.2 Strategies for Mechanical Ventilation 1282
51.5 Use of Inhalational Gases 1283
51.5.1 Heliox 1283
51.5.2 Inhalational Anesthetics 1284
51.6 Pharmacologic Treatment 1284
51.6.1 ?2-Adrenergic Receptor Agonists 1284
51.6.2 Anticholinergics 1285
51.6.3 Corticosteroids 1285
51.6.4 Magnesium 1285
51.6.5 Methylxanthines 1285
51.7 Complications and Complication Management 1286
51.7.1 Complications Associated with Endotracheal Intubation 1286
51.7.2 Complications Associated with Mechanical Ventilation 1286
Conclusions 1287
References 1288
52: Diaphragmatic Palsy 1290
52.1 Clinical Diagnosis and Severity Assessment 1290
52.2 Management 1291
References 1294
Part XVIII: Cardiopulmonary Interactions in the Mechanically Ventilated Patient 1296
53: Cardiopulmonary Interactions in the Ventilated Patient 1297
53.1 Introduction 1297
53.2 The Effect of Changes in Intrathoracic Pressure on Cardiac Function 1298
53.2.1 Spontaneous Ventilation and Normal Heart 1298
53.2.2 Positive Intrathoracic Pressure and Systemic Venous Return 1300
53.2.3 The Effects of Changes in Intrathoracic Pressure on Pulmonary Blood Flow 1303
53.2.4 The Effect of Changes in Intrathoracic Pressure on Left Heart Function 1304
53.2.5 The Effects of Positive End-­Expiratory Pressure on Cardiovascular Function 1307
53.3 Positive Intrathoracic Pressure in Lung Disease: The Acute Respiratory Distress Syndrome 1307
53.4 The Effect of Changes in Intrathoracic Pressure in Congenital Heart Disease 1311
53.4.1 Intrathoracic Pressure in Tetralogy of Fallot and Fontan Physiology 1311
53.4.2 Positive Intrathoracic Pressure and the Bidirectional Cavopulmonary Shunt 1316
53.4.3 Positive Pressure Ventilation and Ventricle Lesions with Duct-Dependent Systemic Perfusion or Systemic to Pulmonary Artery Shunts 1317
53.4.4 Positive Pressure Ventilation in Left to Right Intracardiac Shunts 1319
53.5 Cardiopulmonary Interactions in Acquired Heart Disease 1320
53.5.1 Positive Pressure Ventilation and Heart Failure 1320
53.5.2 The Use of Noninvasive Continuous Positive Airway Pressure in Heart Failure 1323
References 1324
Part XIX: Mechanical Ventilation in Infection, Sepsis and Organ Failure 1331
54: Mechanical Ventilation in Infection, Sepsis and Organ Failure 1332
54.1 Introduction 1332
54.2 The Nature of Ventilatory Support 1334
54.3 Initiation of Ventilation 1335
54.4 Drugs for Intubation 1335
54.4.1 Use of Atropine 1335
54.4.2 Use of Paralytic Agents 1335
54.5 The Goals of Ventilation 1335
54.5.1 Acceptable Blood Gas Values 1336
54.5.1.1 Oxygenation 1336
54.5.1.2 Carbon Dioxide 1337
54.6 Optimization of Cardiovascular Function 1337
54.7 Minimizing Damage to the Lungs 1338
54.7.1 Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) 1339
54.7.2 Respiratory Syncytial Virus Infection 1339
54.7.3 Tuberculosis 1339
54.7.4 Pertussis 1339
54.7.5 Pathologies with Limited Chest Wall Compliance 1339
54.8 Infection Control Issues 1341
54.9 Airway Humidification and Clearance in Sepsis 1341
Conclusions 1341
References 1342
Part XX: Mechanical Ventilation in Neuromuscular Disorders 1348
55: Mechanical Ventilation in Neuromuscular Disorders 1349
55.1 Introduction 1350
55.2 Pathophysiology of Respiratory Failure in Patients with NMD 1350
55.2.1 Weakness of the Respiratory Muscles 1350
55.2.2 Consequences of the Weakness of the Respiratory Muscles 1351
55.3 Benefits of NPPV in Patients with NMD 1352
55.4 When to Start NPPV in Patients with NMD 1353
55.5 How to Ventilate Patients with NMD 1354
55.5.1 Ventilatory Modes 1354
55.5.2 Interfaces 1355
55.5.3 Limitations and Side Effects of NPPV 1355
References 1356
Part XXI: Specific Conditions 1358
56: Tracheostomy 1359
56.1 Technical Considerations 1359
56.2 Indications 1361
56.2.1 Subglottic Stenosis 1362
56.3 Clinical Practice and Experience 1365
56.3.1 Tracheotomy Tube Changes 1366
56.4 Specific Considerations When Ventilating a Patient with a Tracheostomy 1368
56.4.1 Make Sure the Size of Tracheostomy Tube Is Optimized 1368
56.4.2 If There Is a Cuff, Make Sure It Is Not Under- or Overinflated 1368
56.4.2.1 Arguments Against Inflated Cuffed Tracheostomy Tubes 1368
56.4.2.2 Arguments for Inflated Cuffed Tracheal Tubes 1369
56.4.3 Make Sure the Tracheal Tube Is Patent and Not Obstructed 1369
56.4.4 Make Sure the Tracheostomy Tube Is Appropriately Secured 1369
References 1370
Part XXII: Weaning from Mechanical Ventilator Support 1372
57: Weaning Children from Mechanical Ventilator Support 1373
57.1 Identifying Weaning Readiness and Need for Weaning 1374
57.2 Methods of Weaning 1375
57.3 Assessing Patients’ Readiness to Extubate 1377
57.4 Predictive Indices of Extubation Success 1378
57.5 Extubation Failure 1379
References 1380
58: Weaning from Mechanical Ventilator Support in Neonates 1382
58.1 Ventilation Modes During Weaning from Mechanical Ventilation 1382
58.1.1 Patient-Triggered Ventilation 1382
58.1.2 Volume-Targeted Ventilation 1383
58.1.3 Low Rate Intermittent Positive Airway Pressure 1383
58.2 Assessing Readiness for Extubation 1383
58.3 Interventions That Might Facilitate Weaning from the Ventilator 1384
58.3.1 Continuous Positive Airway Pressure and Nasally Delivered Ventilation Modes 1384
58.3.2 Pharmacological Interventions 1385
58.3.2.1 Methylxanthines 1385
58.3.2.1.1 Doxapram 1385
58.3.2.1.2 Corticosteroids 1385
58.4 Summary 1386
References 1386
Part XXIII: Automation of Mechanical Ventilation 1389
59: Explicit Computerized Protocols for Mechanical Ventilation in Children and Neonates 1390
59.1 Introduction 1390
59.1.1 Protocols, Impact on Healthcare 1391
59.1.2 Clinical Decision Support Systems 1391
59.1.3 Computerized Protocols 1391
59.2 Principles for Computerized Protocol Development 1392
59.2.1 Clinical Team 1392
59.2.2 Explicit Variables and Rules 1392
59.2.3 Explicit Instructions 1393
59.2.4 Application at the Point of Care 1393
59.2.5 Representative Data 1393
59.2.6 Iterative Refinement 1393
59.2.7 Simplicity 1393
59.3 Basic Structure of an Explicit Computerized Protocol 1393
59.3.1 Input Data 1393
59.3.1.1 Patient Characteristics 1394
59.3.1.2 Ventilator Input Data 1394
59.3.1.3 Blood Gas Data 1394
59.3.1.4 Hemodynamic Data 1394
59.3.2 Control Unit 1395
59.3.3 Output Data 1395
59.4 Example of an Explicit Computerized Protocols: Smartcare/PS® 1395
59.5 Clinical Evaluation of Explicit Computerized Protocols 1397
59.5.1 Explicit Computerized Protocols for Respiratory Support in Adults 1397
59.5.2 Explicit Computerized Protocols for Respiratory Support in Pediatrics 1397
59.5.3 Explicit Computerized Protocol for Respiratory Support in Neonatology 1397
59.6 Challenges When Implementing an Explicit Computerized Protocol 1398
Conclusion 1398
References 1399
60: Automated Control of Oxygen in Neonates 1402
60.1 Rationale and Methods 1402
60.2 Effects on Oxygenation and Oxygen Exposure 1403
60.3 Effects on Staff Workload 1405
60.4 Limitations 1405
References 1407
61: Automation of Weaning in Children 1409
61.1 Introduction 1409
61.2 SmartCare/PS®: Draeger Medical 1410
61.2.1 Basics of SmartCare/PS® 1410
61.2.1.1 Initiation of SmartCare/PS® 1410
61.2.1.2 Primary Goal: To Safely Maintain the Child in a Zone of Respiratory Comfort (Normal Ventilation) 1412
61.2.1.3 Weaning of Ventilatory Support 1412
61.2.1.4 Spontaneous Breathing Trial 1412
61.2.2 SmartCare/PS® in Clinical Practice 1413
61.3 IntelliVent®: Hamilton Medical 1414
61.3.1 Description of IntelliVent® 1414
61.3.1.1 IntelliVent® (CO2 and O2 controllers) Start Criteria 1414
61.3.1.2 CO2 Controller 1414
61.3.1.2.1 Decrease of Ventilatory Support 1415
61.3.1.2.2 Spontaneous Breathing Trial 1415
61.3.1.3 O2 Controller 1416
61.3.1.3.1 PEEP Thresholds 1416
61.3.2 IntelliVent® in Clinical Practice 1417
Conclusions 1418
References 1418
62: Automation of ALI/ARDS Ventilation in Children 1420
62.1 Role of Computerized Decision Support Tools in Studies Involving Lung Protection Strategies of Mechanical Ventilation 1420
References 1424
Part XXIV: Long-Term Outcomes After Mechanical Ventilation 1426
63: Long-Term Outcomes After Mechanical Ventilation in Neonates 1427
63.1 Introduction 1427
63.2 Short-Term Effects on Respiratory Function 1428
63.3 Long-Term Effects on Respiratory Function 1429
63.4 Long-Term Effects on Exercise Capacity 1431
63.5 Effects on Other Aspects of Respiratory Health 1432
63.6 Neurodevelopmental Outcomes 1432
63.6.1 Neurosensory Problems 1435
63.6.2 General Cognitive Functioning 1435
63.6.3 Other Neurological and Cognitive Areas 1435
63.7 Future Perspectives 1436
References 1437
64: Long-Term Outcomes After Mechanical Ventilation in Children 1441
64.1 Introduction 1441
64.2 Short-Term and Long-Term Outcome Measures 1442
64.2.1 Mortality 1443
64.3 Affects of Mechanical Ventilation on Respiratory Function and the Upper Airways 1444
64.3.1 Ventilator-Induced Lung Injury 1444
64.3.2 Ventilator-Induced Pneumonia 1444
64.3.3 Respiratory Function 1444
64.4 Affects of Mechanical Ventilation on Neuromuscular Function 1445
64.5 Psychological and Functional Sequelae of Mechanical Ventilation 1446
64.5.1 Post-traumatic Stress Disorder (PTSD) 1446
64.5.2 Functional Status Following Critical Illness 1446
64.6 Quality of Life After Mechanical Ventilation 1448
64.7 Summary 1449
References 1449
Part XXV: Mechanical Ventilation in the Operating Room 1452
65: Mechanical Ventilation in the Operating Room 1453
65.1 Breathing Systems in the Operating Room 1453
65.1.1 Open, Semi-open, Semi-­closed, and Closed Breathing Systems 1454
65.1.1.1 The Mapleson Breathing Systems 1454
65.1.1.2 The Circle Anesthesia Breathing Systems 1457
65.1.1.3 Carbon Dioxide Absorbers 1458
65.2 Intraoperative Mechanical Ventilation 1460
65.2.1 Controlled Ventilation 1461
65.2.2 Spontaneous Ventilation 1463
65.2.3 The ICU Ventilator in the OR Including High-Frequency Techniques 1464
65.3 Special Situations and Adjunctive Agents in the OR 1465
65.3.1 One-Lung Ventilation 1465
65.3.2 Helium 1467
65.3.3 Nitric Oxide, Carbon Dioxide, and Nitrogen 1468
65.4 Summary 1469
References 1469
Part XXVI: Extracorporeal Membrane Oxygenation in Acute Hypoxemic Respiratory Failure 1472
66: Extracorporeal Membrane Oxygenation in Acute Hypoxic Respiratory Failure 1473
66.1 Historical Background 1473
66.2 ECMO: Cannulation, Pumps, and Oxygenators 1474
66.3 ECMO Patient Management: Pump Flow, Ventilator Settings, Anticoagulation, and Fluids 1475
66.4 Weaning from ECMO and Decannulation 1475
66.5 ECMO for Acute Hypoxic Respiratory Failure 1476
66.5.1 Indications and Contraindications 1476
66.5.2 Complications 1476
66.5.3 Outcome in ECMO Support for AHRF 1477
66.6 Extracorporeal Pulmonary Support: Future Directions 1480
References 1480
Part XXVII: Evaluating Mechanical Ventilators for Use in Neonatal and Pediatric Patients 1483
67: Evaluating Mechanical Ventilators for Use in Neonatal and Pediatric Patients 1484
67.1 Ventilator Efficacy, Efficiency, and Effectiveness 1485
67.2 Designing Your Own Ventilator Evaluation 1487
67.2.1 Why Purchase New Ventilators? 1487
67.2.2 Which Features Are Important? 1489
67.2.2.1 Physical Design and Available Features 1490
67.2.2.1.1 Footprint/Appearance 1490
67.2.2.1.2 Mobility 1490
67.2.2.1.3 Battery Capability 1490
67.2.2.1.4 Compressors 1490
67.2.2.1.5 Computer Interface 1490
67.2.2.2 Modes 1491
67.2.2.2.1 Control Variables 1491
67.2.2.2.2 Breath Averaging Versus Intra-breath Feedback 1492
67.2.2.2.3 Triggering and Cycling Variables 1492
67.2.2.2.4 Airway Pressure Release Ventilation (APRV) 1493
67.2.2.3 Other Features/Issues to Consider 1493
67.2.2.3.1 Leak Compensation 1493
67.2.2.3.2 Response Time 1493
67.2.2.4 Alarms 1493
67.2.2.4.1 Overall Volume and Distinctiveness 1493
67.2.2.4.2 Remote Alarm 1494
67.2.2.4.3 Essential Parameters to Monitor with Alarms 1494
67.2.2.5 Performance 1494
67.2.2.5.1 Tidal Volume Accuracy 1494
67.2.2.5.2 Location of Tidal Volume Measurements 1494
67.2.2.5.3 VT Variation in VT-Targeted Decelerating Flow Mode 1495
67.2.2.5.4 Work of Breathing and Patient-Ventilator Dyssynchrony 1496
67.2.2.6 User Interface 1496
67.2.2.6.1 Ease of Training/Use 1496
67.2.2.6.2 Simplicity 1496
67.2.2.7 Financial Analysis 1496
67.2.2.7.1 Purchasing Costs 1496
67.2.2.7.2 Operating Costs 1496
67.2.2.7.3 Maintenance Costs 1497
67.2.2.7.4 Upgradeability Cost (and Ease) 1497
67.2.3 Creating an Evaluation Team and Format 1497
67.2.4 Bench Testing 1498
67.2.4.1 Bench Testing Case Study 1499
67.2.5 Clinical Trial 1502
67.2.5.1 Results of the Clinical Trial 1504
67.2.6 The Decision 1504
References 1507
Part XXVIII: Organization and Management of Mechanical Ventilation Worldwide 1510
68: Organization Characteristics in North Africa 1512
68.1 Region’s Profile and Child Health (Table 68.1) 1512
68.2 Development of Pediatric Intensive Care in the Region 1513
68.3 Pediatric Critical Care Resources 1513
68.3.1 Formal ICUs 1513
68.3.1.1 Caregiver Coverage and Role 1514
68.3.1.2 Equipment 1514
68.3.1.2.1 Respiratory Support Equipment 1514
68.3.1.2.2 Monitoring Equipment 1515
68.3.2 Informal Pediatric Critical Beds 1515
68.4 Problems Encountered 1515
68.5 Educational Issues 1516
References 1516
69: Organization Characteristics in North America 1517
69.1 Caregiver Coverage and Role 1517
69.2 Recommended Equipment 1518
69.3 Educational Issues 1518
References 1519
70: Organization Characteristics in South America 1521
70.1 Population Characteristics 1522
70.1.1 Baseline Characteristics 1522
70.1.2 Primary Reason for Mechanical Ventilation 1523
70.1.3 PICU General Characteristics 1523
70.2 Caregiver Coverage and Role (Tables 70.2 and 70.3) 1523
70.2.1 Medical Doctor 1524
70.2.2 Nurses 1524
70.2.3 Respiratory Therapist 1524
70.2.4 Physiotherapist 1524
70.3 Recommended Equipment 1524
70.3.1 Respiratory Support Equipment 1524
70.3.2 Interfaces 1524
70.3.3 Ventilator Modes and Setting 1525
70.3.4 Monitoring Equipment 1525
70.4 Educational Issues 1525
70.5 Outcome 1525
References 1526
71: Organization Characteristics in Europe 1528
71.1 Results of the Survey 1528
71.1.1 Caregiver Coverage and Role (Tables 71.1, 71.2, 71.3, 71.4, and 71.5) 1528
71.1.2 Equipment and Monitoring (Tables 71.6 and 71.7) 1530
71.1.3 Educational Issues (Table 71.8) 1531
71.2 Conclusion and Proposals 1531
References 1532
72: Organization Characteristics in Oceania 1534
72.1 Neonatal Services 1534
72.2 Pediatric Services 1536
72.3 Transport Services 1537
72.3.1 Neonatal Retrieval Services 1537
72.3.2 Pediatric Retrieval Services 1538
72.4 Role Delineation of Mechanical Ventilation in Pediatric Intensive Care 1538
72.4.1 Initiation of Ventilation in Pediatric Intensive Care in Australia and New Zealand Is Based Upon Medical Decision Making 1538
72.4.2 Maintenance of Ventilation 1538
72.4.3 Weaning 1539
72.5 Monitoring of Mechanically Ventilated Patients 1539
72.6 Positive Aspects of System 1539
72.7 Problems with System 1539
Conclusion 1540
References 1540
Part XXIX: Ethical Concerns 1541
73: Ethical Concerns 1542
73.1 Observational Studies on the Withholding or Withdrawal of Mechanical Ventilation: Striking Variability and Some Emerging Trends 1543
73.2 Special Considerations in the Developing World 1545
73.3 Parental Perspectives on End-of-Life Care: Communication Must Improve 1546
73.4 Special Considerations for Neonates 1547
73.5 A Guideline for the Withdrawal of Mechanical Ventilation at the End of Life: Anticipating and Coordinating Care 1547
References 1552
Index 1555

Erscheint lt. Verlag 12.11.2014
Zusatzinfo X, 1642 p. 405 illus., 109 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Anästhesie
Medizin / Pharmazie Medizinische Fachgebiete Notfallmedizin
Medizin / Pharmazie Medizinische Fachgebiete Pädiatrie
Schlagworte Cardio-pulmonary interactions • Development of the respiratory system • Lung Diseases • mechanical ventilation
ISBN-10 3-642-01219-1 / 3642012191
ISBN-13 978-3-642-01219-8 / 9783642012198
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 29,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Reinhard Larsen; Thorsten Annecke

eBook Download (2022)
Urban & Fischer Verlag - Fachbücher
219,99
Struktur und Funktion

von Martin Trepel

eBook Download (2021)
Urban & Fischer Verlag - Lehrbücher
43,99
Grundlagen, Formen der Allgemeinanästhesie, Lokal- und …

von Hans Walter Striebel

eBook Download (2019)
Georg Thieme Verlag KG
323,99