Frank Emmert-Streib studied physics at the University of Siegen (Germany) and received his Ph.D. in Theoretical Physics from the University of Bremen (Germany). He was a postdoctoral research associate at the Stowers Institute for Medical Research (Kansas City, USA) in the Department for Bioinformatics and a Senior Fellow at the University of Washington (Seattle, USA) in the Department of Biostatistics and the Department of Genome Sciences. Currently, he is Lecturer/Assistant Professor at the Queen's University Belfast at the Center for Cancer Research and Cell Biology (CCRCB) leading the Computational Biology and Machine Learning Lab. His research interests are in the field of computational biology, machine learning and biostatistics in the development and application of methods from statistics and machine learning for the analysis of high-throughput data from genomics and genetics experiments. Matthias Dehmer studied mathematics at the University of Siegen (Germany) and received his PhD in computer science from the Technical University of Darmstadt (Germany). Afterwards, he was a research fellow at Vienna Bio Center (Austria), Vienna University of Technology and University of Coimbra (Portugal). Currently, he is Professor at UMIT - The Health and Life Sciences University (Austria). His research interests are in bioinformatics, cancer analysis, chemical graph theory, systems biology, complex networks, complexity, statistics and information theory. In particular, he is also working on machine learning-based methods to design new data analysis methods for solving problems in computational biology and medicinal chemistry.
Control of Type I Error Rates for Oncology Biomarker Discovery with High-throughput Platforms (Jeffrey Miecznikowski, Dan Wang, Song Liu)
Discovery of Expression Signatures in Chronic Myeloid Leukemia by Bayesian Model Averaging (Ka Yee Yeung)
Bayesian Ranking and Selection Methods in Microarray Studies (Hisashi Noma, Shigeyuki Matsui)
Multi-class Classification via Bayesian Variable Selection with Gene Expression Data (Yang Aijun, Song Xinyuan, Li Yunxian)
Colorectal Cancer and its Molecular Subsystems: Construction, Interpretation, and Validation (Vishal N. Patel, Mark R. Chance)
Semi-Supervised Methods for Analyzing High-Dimensional Genomic Data (Devin C. Koestler)
Network Medicine: Disease Genes in Molecular Networks (Sreenivas Chavali, Kartiek Kanduri)
Inference of Gene Regulatory Networks in Breast and Ovarian Cancer by Integrating Different Genomic Data (Binhua Tang, Fei Gu, Victor X. Jin)
Network Module Based Approaches in Cancer Data Analysis (Guanming Wu, Lincoln D. Stein)
Discriminant and Network Analysis to Study Origin Of Cancer (Yue Wang, Li Chen, Ye Tian, Guoqiang Yu, David J. Miller, Ie-Ming Shih)
Intervention and Control of Gene Regulatory Net-Works: Theoretical Framework and Application to Human Melanoma Gene Regulation (Nidhal Bouaynaya, Roman Shterenberg, Dan Schonfeld, Hassan M. Fathallah-Shaykh)
Identification of Recurrent DNA Copy Number Aberrations in Tumors (Vonn Walter, Andrew B. Nobel, D. Neil Hayes, Fred A. Wright)
The Cancer Cell, its Entropy, and High-Dimensional Molecular Data (Wessel N. van Wieringen, Aad W. van der Vaart)
Overview of Public Cancer Databases, Resources and Visualization Tools (Frank Emmert-Streib, Ricardo de Matos Simoes, Shailesh Tripathi, Matthias
Dehmer)
Erscheint lt. Verlag | 9.11.2012 |
---|---|
Reihe/Serie | Quantitative and Network Biology |
Quantitative and Network Biology | Quantitative and Network Biology |
Mitarbeit |
Herausgeber (Serie): Frank Emmert-Streib |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Allgemeines / Lexika |
Naturwissenschaften ► Biologie | |
Schlagworte | Analysis • APPROACHES • Basis • Bioinformatics & Computational Biology • Bioinformatik • Bioinformatik u. Computersimulationen in der Biowissenschaften • biological • Biostatistics • Biostatistik • Biowissenschaften • Book • Cancer • Complex • Contrast • Data • Different • discusses • Due • Epidemiologie • focuses • Gene • highthroughput • Krebs (Medizin) • Life Sciences • Medical Science • Medical Statistics & Epidemiology • Medizin • Medizinische Statistik u. Epidemiologie • Methodological • Methods • Nature • orless • Point • Ready • Reference • Single • statistically • Statistics • Statistik • View |
ISBN-10 | 3-527-66544-7 / 3527665447 |
ISBN-13 | 978-3-527-66544-0 / 9783527665440 |
Haben Sie eine Frage zum Produkt? |
Größe: 8,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich