International Review of Cytology -

International Review of Cytology (eBook)

A Survey of Cell Biology

Kwang W. Jeon (Herausgeber)

eBook Download: PDF | EPUB
2007 | 1. Auflage
304 Seiten
Elsevier Science (Verlag)
978-0-08-092097-9 (ISBN)
190,00 € inkl. MwSt
Systemvoraussetzungen
189,38 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
International Review of Cytology presents current advances and comprehensive reviews in cell biology - both plant and animal. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research. Articles in this volume include LEM-domain Proteins: New Insights into lamin-interacting Proteins, New Insights into Membrane Trafficking and Protein Sorting, Structure and Function of the Atypical Orphan Nuclear Receptor, Zebrafish Gastrulation: Cell Movements, Signals and Mechanisms, Calcium Dynamics: Spatio-tempral Organization from the Subcellular to the Organ Level, New Technologies Used in the Study of Human Melanoma.
International Review of Cytology presents current advances and comprehensive reviews in cell biology - both plant and animal. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research. Articles in this volume include LEM-domain Proteins: New Insights into lamin-interacting Proteins; New Insights into Membrane Trafficking and Protein Sorting; Structure and Function of the Atypical Orphan Nuclear Receptor; Zebrafish Gastrulation: Cell Movements, Signals and Mechanisms; Calcium Dynamics: Spatio-tempral Organization from the Subcellular to the Organ Level; New Technologies Used in the Study of Human Melanoma.

Front Cover 1
A Survey of Cell Biology 4
Copyright Page 5
Contents 6
Contributors 10
Chapter 1: LEM-Domain Proteins: New Insights into Lamin-Interacting Proteins 12
I. Introduction 12
II. LEM-Domain Proteins: Presenting the Family 21
III. LEM-Domain Proteins: Various Binding Partners and Various Functions 23
A. LEM-Domain Proteins and Their Common Binding Partner Barrier-to-Autointegration Factor (BAF) 24
B. LAP2beta Is Involved in the Regulation of DNA Replication 26
C. LEM-Domain Proteins and Nuclear Reassembly 28
D. LEM-Domain Proteins: A Mainly Repressive Role in Gene Regulation 29
E. Association of LEM-Domain Proteins with Cytoskeletal Components 39
F. Contribution of LAP2alpha and Emerin to Nucleoprotein Organization of the Preintegration Complex (PIC) and Retroviral Replication 40
IV. LEM-Domain Protein Complexes and Laminopathies 42
A. Mutations in Emerin or LMNA Cause EDMD 43
B. Loss-of-Function Mutations in MAN1 Cause Osteopoikilosis, Buschke-Ollendorf Synfrome, and Melorheostosis 44
C. Mutations in LAP2 and Lamin A/C Are Associated with Dilated Cardiomyopathy 44
D. Models 45
V. Concluding Remarks 49
Acknowledgments 50
References 50
Chapter 2: New Insights into Membrane Trafficking and Protein Sorting 58
I. Introduction 59
II. Secretory and Endocytic Pathways of Eukocarytic Cells: An Overview 61
A. Endoplasmic Reticulum 61
B. The ER-Golgi Intermediate Compartment 63
C. The Golgi Apparatus 64
D. The trans-Golgi Network 66
E. Endosomes and Lysosomes 67
III. Regulation of Membrane Transport in the Secretory Pathway: ER to Golgi Transport 69
A. Sorting Signals 69
B. Vesicle Transport/Membrane Carriers 70
C. The COPI and COPII Coats 71
D. Tettering Factors 73
IV. Relationship Between Membrane Transport and Organelle Biogenesis 74
A. Linking Protein Transport and Organelle Structure 75
B. Membrane Fusion 79
C. Interactions with the Cytoskeleton 81
D. Mitosis 82
V. The Role of G-Proteins and Lipids in Defining Organelle Identity 84
A. Small G Proteins 84
B. Lipids 90
VI. Generation of Subdomains 93
VII. Form and Function of the TGN: Subdomains and Trafficking 96
A. Trafficking from the TGN 97
B. Evidence for TGN Subdomains 99
C. Maintenance of TGN Subdomains 102
D. Trafficking in Specialized Cells 108
VIII. Concluding Remarks 109
Acknowledgments 110
References 110
Chapter 3: Structure and Function of the Atypical Orphan Nuclear Receptor Small Heterodimer Partner 128
I. Introduction 128
II. Gene Structure and Regulation of the Small Heterodimer Partner 131
A. Genome and Tissue-Specific Gene Expression 131
B. Protein Structure 134
C. Regulation of Gene Transcription by Small Heterodimer Partner and Interacting Proteins 135
III. Mechanisms of Small Heterodimer Partner Function and Gene Regulation 140
A. Coactivator Competition 140
B. Corepressor Recruitment 143
C. Blocking of DNA Binding 144
D. Regulation of SHP Promoter Activity and Gene Expression 145
IV. Physiological Impact of Small Heterodimer Partner Expression and Function 149
A. Lipid and Cholesterol Metabolism 149
B. Small Heterodimer Partner in Detoxification and Drug Metabolism in the Liver 157
C. Glucose Metabolism 158
D. Diabetes and Genetic Variation of Small Heterodimer Partner Gene 159
V. Concluding Remarks 160
Acknowledgments 162
References 162
Chapter 4: Zebrafish Gastrulation: Cell Movements, Signals, and Mechanisms 170
I. Introduction 170
II. Gastrulation Cell Movements in Zebrafish 171
A. Epiboly 171
B. Internalization 174
C. Convergent Extension 175
III. Instructive and Permissive Cues 177
A. Noncanonical Wnt Signaling 177
B. Other Signaling Pathways 184
C. Extracellular Matrix and Fibronectin 187
IV. Tissue Interactions 188
V. Differential Adhesion 190
VI. Concluding Remarks 192
Acknowledgments 193
References 194
Chapter 5: Calcium Dynamics: Spatio-Temporal Organization from the Subcellular to the Organ Level 204
I. Introduction 205
II. Oscillations 209
A. Mechanism Based on the Regulatory Properties of the InsP3 Receptor 209
B. Possible Involvement of InsP3 Dynamics 210
C. Effect of the Different Isoforms of the InsP3 Receptor 215
D. Physiological Impacts of the Oscillatory Dynamics and Frequency Coding 216
III. Elementary Aspects of Ca2+ Signaling 219
A. Random Opening of a Few Ca2+ Channels: Blips and Puffs 219
B. Possible Involvement of Mitochondria in Ca2+ Dynamics 220
IV. Intracellular Ca2+ Waves 221
A. General Aspects 221
B. From Ca2+ Puffs to Ca2+ Waves 223
C. Fertilization Ca2+ Waves 224
V. Intercellular Ca2+ Waves 226
A. General Aspects 226
B. Intercellular Ca2+ Waves and Gap Junctions 227
C. Intercellular Ca2+ Waves and Paracrine Signal Communication 231
D. Intercellular Ca2+ Waves and Messenger Regeneration 233
E. Intercellular Ca2+ Waves: From Cultures to Living Tissues 236
F. Intercellular Ca2+ Waves Through Connected Hepatocytes: Implication for Liver Function 238
VI. Concluding Remarks 242
Acknowledgments 244
References 244
Chapter 6: New Technologies Used in the Study of Human Melanoma 258
I. Introduction 259
II. Biology of Human Melanoma 259
A. Known Issues in Melanoma Biology 259
B. Conventional Approaches to Challenge Human Melanoma 265
C. Pivotal Genes in Melanoma Transformation and Progression 266
III. Molecular Characterization and Management of Human Melanomas 272
A. Serial Analysis of Gene Expression (SAGE) 273
B. High-Density Microarrays 277
C. Applications of Basic Sciences in the Management of Melanoma Patients 283
IV. Concluding Remarks 284
Acknowledgments 285
References 285
Index 298

LEM‐Domain Proteins: New Insights into Lamin‐Interacting Proteins


Nicole Wagner*; Georg Krohne    * Department of Developmental Biology, Wenner‐Gren Institute, Stockholm University, S‐10691 Stockholm, Sweden
† Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, D‐97074 Würzburg, Germany

Abstract


LEM‐domain proteins present a growing family of nonrelated inner nuclear membrane and intranuclear proteins, including emerin, MAN1, LEM2, several alternatively spliced isoforms of LAP2, and various uncharacterized proteins in higher eukaryotes as well as the Drosophila‐specific proteins otefin and Bocksbeutel. LEM‐domain proteins are involved in diverse cellular processes including replication and cell cycle control, chromatin organization and nuclear assembly, the regulation of gene expression and signaling pathways, as well as retroviral infection. Genetic analyses in different model organisms reveal new insights into the various functions of LEM‐domain proteins, lamins, and their involvement in laminopathic diseases. All these findings as well as previously proposed ideas and models have been summarized to broaden our view of this exciting protein family.

Key words

LEM‐domain proteins

Lamin

Emerin

MAN1

LEM2

BAF

LAP2

Laminopathies

Nuclear envelope

I Introduction


The nuclear envelope, a characteristic feature of eukaryotic cells, is composed of three distinct membrane domains—the inner and the outer nuclear membrane, separated by the luminal space, and the wall of nuclear pore complexes. The inner nuclear membrane (INM) is distinct from the two other membranes and contains a specific subset of integral and peripheral membrane proteins, whose number has grown significantly. During interphase these proteins link the INM and the nuclear lamina, a layer of intermediate filaments bordering its nucleoplasmic surface, to the peripheral chromatin. This structural and functional network of lamin polymers and associated proteins supports essential functions in the nucleus, including DNA replication and the regulation of transcription, chromatin organization, cell differentiation, and apoptosis as well as the shape and structure of the nucleus itself (Broers et al., 2006; Gruenbaum et al., 2005; Holmer and Worman, 2001).

A group of nonrelated inner nuclear membrane proteins shares a common motif of approximately 40 amino acids, known as the LEM‐domain. This motif was first detected by Jean‐Claude Courvalin (see acknowledgments of Lin et al., 2000), and its name derives from the INMs LAP2, Emerin, and MAN1 (Lin et al., 2000). The LEM‐domain was initially described as a conserved globular module of approximately 40 amino acids. The three‐dimensional structure of this motif was determined in 2001 by Cai et al. and Laguri et al., who demonstrated that the LEM‐domain as well as the LEM‐like domain is composed of two parallel α‐helices that are connected by a loop (Fig. 1) (Cai et al., 2001; Laguri et al., 2001).

Fig. 1 Three‐dimensional structure of the LAP2 LEM‐ and LEM‐like domain. Ribbon diagrams of the LAP2 LEM‐domain and the LEM‐like domain are composed of two large parallel α‐helices that are connected by a loop (Cai et al., 2001). (Reprinted by permission from Macmillan Publishers Ltd: EMBO Journal, [20, 4399–4407], copyright 2001.)

The LEM‐domain defines a growing family of nuclear proteins, including several isoforms of the lamina‐associated polypeptides 2 (Berger et al., 1996; Dechat et al., 2000a; Schoft et al., 2003), emerin (Bione et al., 1994), MAN1 (Lin et al., 2000), LEM2 (Brachner et al., 2005), LEM3 (Lee et al., 2000), as well as the Drosophila‐specific proteins otefin (Ashery‐Padan et al., 1997a,b) and Bocksbeutel (Wagner et al., 2004) and several yet uncharacterized human proteins named Lem3, Lem4, and Lem5 (Fig. 2) (Lee and Wilson, 2004; Mansharamani and Wilson, 2005).

Fig. 2 Structural organization of LEM‐domain proteins. Schematic diagrams of human, Caenorhabditis (C.) elegans, and D. melanogaster LEM‐domain proteins. The alternatively spliced LAP2 isoforms share a similar domain organization. The structurally related isoforms share a common N‐terminal domain (LAP2 constant domain: LEM motif, yellow; LEM‐like motif; yellow, hatched) but differ in their C‐terminal domain. The unique C‐terminus of human LAP2α is shown as a red box; the other human isoforms differ by small insertions in the C‐terminal domain shown as differently colored boxes (identical colored boxes indicate conserved regions). Emerin, MAN1, and the MAN‐1 related protein LEM2 have been identified in humans, C. elegans, and other species while the human genome encodes three additional putative LEM‐domain proteins, and the MAN1‐related protein LEM2 have been identified in humans and C. elegans and other designed as Lem3 (accession number NP‐689576), Lem4 (accession number AAH43157), and Lem5 (accession number AB096677). The LEM‐domain proteins otefin, Bocksbeutel‐α, and Bocksbeutel‐β are expressed exclusively in the fruitfly D. melanogaster. Numbers denote the position of amino acids; dashed box, transmembrane domain; LEM, LEM‐motif; LEM‐like, LEM‐like motif; SRV, SRV motif; RRM, RRM domain; ANK, ankyrin repeats.

The LEM‐domain of all analyzed proteins has one characteristic in common—it is directly bound to the conserved chromatin‐associated protein, barrier‐to‐autointegration factor (BAF) (Bengtsson and Wilson, 2004; Cai et al., 2001; Mansharamani and Wilson, 2005). LEM‐domain proteins and BAF have been detected in multicellular organisms from flies and nematodes to human but are absent from yeasts and plants (Segura‐Totten and Wilson, 2004; Umland et al., 2000).

In addition to binding to BAF, LEM‐domain proteins of the INM interact with A‐ or B‐type lamins via a separate domain, and a few members of this protein family are localized in the nucleoplasm (Table I). In addition, several LEM‐domain proteins interact in vitro with many of the same binding partners, including transcriptional regulators such as GCL and Btf (Table I) (Haraguchi et al., 2004; Holaska et al., 2003; Wilkinson et al., 2003; Zastrow et al., 2004).

Table I

Binding Partners of LEM‐Domain Proteins

Plants
S. cerevisiae
C. elegans
Ce‐emerin Ce‐lamin Co‐IPa of Ce‐emerin with Ce‐lamin from embryo lysates; Ce‐lamin‐dependent localization of Ce‐emerin Gruenbaum et al., 2002
Ce‐LEM2 Ce‐lamin, Ce‐BAF Blot overlay assay using bacterially expressed Ce‐LEM2 and 35S‐labeled Ce‐ lamin/Ce‐BAF; Ce‐lamin‐dependent localization of Ce‐LEM2 Liu et al., 2003
D. melanogaster
Otefin Lamin Dm0 Co‐IP of otefin and lamin Dm0 from embryo lysates; yeast 2 hybrid interaction of otefin and lamin Dm0, lamin Dm0‐ dependent localization of otefin Goldberg et al., 1998; Wagner et al., 2004
Bocksbeutel Lamin Dm0 Lamin Dm0‐dependent localization of Bocksbeutel Wagner et al., 2004
dMAN1 Lamin Dm0, lamin C Co‐IP of lamin Dm0/lamin C with dMAN1 from Kc167 cell lysates; lamin Dm0‐dependent localization of dMAN1 Wagner et al., 2006
D. rerio
LAP2β Lamin A, lamin B2 Co‐IP of lamin A/B2 with GFP‐LAP2β fusion protein from Xenopus A6 cell...

Erscheint lt. Verlag 13.6.2007
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Histologie / Embryologie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zellbiologie
Technik
ISBN-10 0-08-092097-7 / 0080920977
ISBN-13 978-0-08-092097-9 / 9780080920979
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich