International Review of Cytology -

International Review of Cytology (eBook)

A Survey of Cell Biology

Kwang W. Jeon (Herausgeber)

eBook Download: PDF | EPUB
2011 | 1. Auflage
312 Seiten
Elsevier Science (Verlag)
978-0-08-056093-9 (ISBN)
190,00 € inkl. MwSt
Systemvoraussetzungen
189,38 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
International Review of Cytology presents current advances and comprehensive reviews in cell biology - both plant and animal. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.
International Review of Cytology presents current advances and comprehensive reviews in cell biology - both plant and animal. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.

Front Cover 1
A Survey of Cell Biology 4
Copyright Page 5
Contents 6
Contributors 8
Chapter 1: Cross-Talk Among Integrin, Cadherin, and Growth Factor Receptor: Roles of Nectin and Nectin-Like Molecule 10
1. Introduction 11
2. Molecular and Structural Features of Nectin and Nectin-Like Molecule 13
3. Formation of Adherens Junctions Induced by the Nectin-Afadin System 18
3.1. Interaction between the nectin–afadin and cadherin–catenin systems 18
3.2. Cross-talk between nectin and integrin 20
3.3. Cooperative roles of nectin and integrin alphavbeta3 in intracellular signaling 22
3.4. Regulation of adhesion activity of cadherin by nectin 26
3.5. Roles of nectin and growth factor receptor in cell survival 26
3.6. Disassembly of adherens junctions and epithelial-to-mesenchymal transition 28
4. Formation of Tight Junctions Regulated by the Nectin-Afadin System 31
4.1. Components of tight junctions 31
4.2. Integrity of tight junctions mediated by nectin 33
4.3. The nectin and Par complex in the formation of cell polarity and tight junctions 35
5. Roles of Nectin and Necl-5 36
5.1. Roles of nectin in nectin-mediated cell–cell adhesions 36
5.2. Physiological roles of Necl-5 41
5.3. Pathological implications of nectin and Necl-5 47
6. Common Utilization of Signaling Molecules in Forming Leading Edges and Cell-Cell Adhesion 48
7. Concluding Remarks 49
References 50
Chapter 2: Neural Stem Cells in the Mammalian Brain 64
1. Introduction 65
2. Neural Stem Cells and Their Niches in the Adult Mammalian Brain 66
2.1. General description of NCSs 66
2.2. Neural stem cells in the subventricular zone 68
2.3. Neural stem cells in the dentate gyrus 73
2.4. Neural stem cells in other brain parts 75
3. Transcriptional Regulation of NSC Self-Renewal and Differentiation 78
3.1. Regulation of self-renewal and stemness 78
3.2. Neural differentiation of embryonic stem cells 82
3.3. NSC lineage determination 86
4. Neural Stem and Progenitor Cell-Based Therapy 91
4.1. Transplantation of stem and progenitor cells 91
4.2. Mobilization of internal repair potential of the brain 94
4.3. Neural stem cells and cancer therapy 96
5. Conclusions 99
Acknowledgments 100
References 100
Chapter 3: Mechanisms of Mitotic Spindle Assembly and Function 120
1. Introduction 121
2. Molecular Components of the Mitotic Spindle 122
2.1. Microtubules as structural and dynamic components of the spindle 122
2.2. Centrosomes: A major source of microtubule nucleation for spindle assembly 123
2.3. Chromosomes: Active players in mitosis 124
2.4. Proteomics and functional genomics: Generation of the complete parts list 124
3. Major Pathways of Spindle Assembly 128
3.1. Classic model of search and capture 128
3.2. Self-assembly of spindles 128
3.3. Ran as a key player in chromosome-directed spindle assembly 130
4. Mechanisms of Chromosome Congression and Attachment 138
4.1. Classic model of congression 138
4.2. Molecular mechanisms governing chromosome congression 141
4.3. Kinetochore–microtubule attachment 141
5. Mechanisms of Chromosome Segregation 147
5.1. Anaphase A chromosome segregation 147
5.2. Anaphase B spindle pole separation 151
6. Conclusions and Future Directions 152
Acknowledgments 153
References 153
Chapter 4: Multiple Actions of Secretin in the Human Body 168
1. Introduction 169
2. Structure and Regulation of Secretin and the Gene 172
2.1. Structure 172
2.2. Regulation 172
3. Secretin's Actions in the Gastrointestinal Tract 173
3.1. Stomach 173
3.2. Pancreas 176
3.3. Liver 177
3.4. Intestine 180
4. Secretin's Actions in Other Tissues 181
4.1. Brain 181
4.2. Hypothalamus–pituitary–kidney axis 184
4.3. Additional other tissues 186
5. Summary and Future Prospects 187
References 188
Chapter 5: Biology of the Striated Muscle Dystrophin-Glycoprotein Complex 200
1. Introduction 201
2. Composition of the Core Dystrophin-Glycoprotein Complex 201
2.1. Dystroglycan complex 202
2.2. Sarcoglycan complex 202
2.3. Dystrobrevin/syntrophin complex 203
3. Function in Mammals 204
3.1. Mechanical stabilization and force transmission 204
3.2. Organization and stabilization of the neuromuscular junction 211
3.3. Cellular signaling 212
4. Function in Model Organisms 214
4.1. Caenorhabditis elegans 214
4.2. Drosophila 215
4.3. Zebrafish 216
5. Concluding Remarks 216
Acknowledgments 217
References 217
Chapter 6: Providing Unique Insight into Cell Biology via Atomic Force Microscopy 236
1. Introduction 237
2. AFM: Principle of Operation and Operation Modes 238
3. AFM Can Measure Forces and Elasticity 241
4. Advantages of AFM 243
5. Application of AFM to Biology 244
5.1. Cells 244
5.2. Membranes 249
5.3. Single molecules 252
6. Conclusions 255
Acknowledgments 256
References 256
Chapter 7: Characteristics of Oxysterol Binding Proteins 262
1. Introduction 263
1.1. Oxysterols 263
1.2. Mediators of oxysterol effects on cellular lipid metabolism 264
1.3. Identification of oxysterol binding protein (OSBP)-related protein (ORP) families 265
2. Subcellular Distribution of the ORPs 267
2.1. The PH domain region and ankyrin repeats of long ORPs 267
2.2. Roles of the C-Terminal ORD and the FFAT motif 269
2.3. Models on ORP function based on the localization data 269
3. Role of the Mammalian ORPs in Lipid Metabolism 271
3.1. Ligands of the mammalian ORP proteins 271
3.2. The roles of OSBP in cholesterol and sphingomyelin metabolism 272
3.3. OSBP and hepatic lipogenesis 275
3.4. The involvement of mammalian OSBP homologs in cellular lipid metabolism 275
3.5. Putative connections between the ORP, the LXR, and the SREBP 277
4. The Yeast S. cerevisiae ORPs 278
4.1. Role of yeast osh proteins in sterol metabolism 278
4.2. Osh4p regulates post-golgi secretory vesicle transport 280
5. Role of ORPs in Cell Signaling 281
6. Future Perspectives 283
Acknowledgments 286
References 286
Index 296

Chapter Two

Neural Stem Cells in the Mammalian Brain


A.V. Revishchin*,; L.I. Korochkin*; V.E. Okhotin*; G.V. Pavlova*    * Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071 Russia

Abstract


New fundamental results on stem cell biology have been obtained in the past 15 years. These results allow us to reinterpret the functioning of the cerebral tissue in health and disease. Proliferating stem cells have been found in the adult brain, which can be involved in postinjury repair and can replace dead cells under specific conditions. Numerous genomic mechanisms controlling stem cell proliferation and differentiation have been identified. The involvement of stem cells in the genesis of malignant tumors has been demonstrated. Neural stem cell tropism toward tumors has been shown. These findings suggest new lines of research on brain functioning and development. Stem cells can be used to develop radically new treatments of neurodegenerative and cancer diseases of the brain.

Key Words

Stem cells

Stem cell self-renewal

Neuron

Brain

Transplantation

Nerve cell differentiation

Contents

1. Introduction   56

2. Neural Stem Cells and Their Niches in the Adult Mammalian Brain   57

2.1. General description of NCSs   57

2.2. Neural stem cells in the subventricular zone   59

2.3. Neural stem cells in the dentate gyrus   64

2.4. Neural stem cells in other brain parts   66

3. Transcriptional Regulation of NSC Self-Renewal and Differentiation   69

3.1. Regulation of self-renewal and stemness   69

3.2. Neural differentiation of embryonic stem cells   73

3.3. NSC lineage determination   77

4. Neural Stem and Progenitor Cell-Based Therapy   82

4.1. Transplantation of stem and progenitor cells   82

4.2. Mobilization of internal repair potential of the brain   85

4.3. Neural stem cells and cancer therapy   87

5. Conclusions   90

Acknowledgments   91

References   91

1 INTRODUCTION


The stem cell is one of the most popular topics in current biology and medicine. The increasing number of publications indicates that stem cells are of great interest to a wide range of biological and medical scientists. The topic of stem cells is central in developmental biology. Studying molecular mechanisms of stem cell self-renewal and differentiation control promises to shed light on key problems in cell biology. A great number of publications form a base of new data; however, these data often do not solve the problem posed but rather raise new and more complex questions. One of these unclear issues is the definition of the stem cell or, to be more specific, what distinguishes a stem cell from other cells. The idea of stem cells was proposed by the Russian histologist Alexander Maximov (1907). It was accepted that the adult body lacks stem cells and their existence is limited to the earliest period of embryonic development. Another Russian histologist, Friedenstein (1976), found these cells in the mesenchyme (stroma) of the adult bone marrow. Based on their localization, these cells were later assigned to stromal or mesenchymal stem cell groups.

Stem cells are divided into embryonic stem cells (ESCs) isolated from blastocyst stage embryos and regional stem cells isolated from later embryonic or adult tissues. In ontogeny, all organs and tissues result from the proliferation and differentiation of blastocyst cells, which are ESCs in the strict sense (Brustle et al., 1999; Gage, 2000). ESCs are pluripotent (i.e., they give rise to derivatives of all germ layers including nervous system cells). The multistage development of ESCs results in pools of regional stem cells varying by their potential for differentiation in the developing and adult body.

Most adult stem cells have a limited differentiation potential and can largely give rise to derivatives of a single germ layer, ectoderm in the case of neural stem cells (NSCs). They also represent a substantial repair reserve and can correct various defects in different organs including the nervous system (Loseva, 2001).

The most common definition of stem cells involves their conformity to three main conditions: (1) multipotency (i.e., the capacity to give rise to different cell types); (2) high proliferative potential; and (3) self-renewal (i.e., the capacity to reproduce identical descendants by symmetrical divisions) (Hall and Watt, 1989; Potten and Loeffler, 1990). However, the diversity of cells assigned to stem cells can go beyond this definition. For instance, germline cells, often considered as stem cells, are unipotent. Other cells can self-renew only within a limited time period or under specific conditions. For instance, cells of the hippocampal dentate gyrus (DG) (described later) divide only asymmetrically in adult mammals to yield committed progenitors (Encinas et al., 2006); however, in culture these cells self-renew and generate neurospheres containing the whole range of neural progenitors including NSCs (Mignone et al., 2004). On the other hand, descendants of stem cells not recognized as stem cells in many cases meet all three conditions. For instance, type C cells in the subventricular zone (SVZ) of the lateral ventricles (see later), called amplifying progenitors rather than stem cells in culture medium supplemented with epidermal growth factor (EGF), satisfy all three conditions of stem cells (Doetsch et al., 2002). Hence, the above definition is vague and needs to be refined in the future. For instance, Mikkers and Frisen (2005) proposed defining stem cells as cells halted somewhere along the line of specialization and dividing to give rise to cells of their own type and to cells progressing along the line. In terms of formal logic, this definition seems more consistent; however, it also does not cover the whole range of stem cell properties. This chapter concerns some problems related to NSCs that we consider of primary importance for neurobiology and developmental biology.

2 NEURAL STEM CELLS AND THEIR NICHES IN THE ADULT MAMMALIAN BRAIN


2.1 General description of NCSs


NSCs are classified as regional stem cells. The finding of stem cells in the nervous system has shaken a number of established concepts, particularly concerning recovery processes in the central nervous system. NSC has the same properties as the stem cell in general. The molecular markers that allow the identification of NSCs as well as the subsequent stages of their differentiation are known (Gage et al., 1995). Note, however, that these markers are relative and their significance depends, in particular, on the cell environment and state. For instance, in the adult brain, the standard NSC marker nestin can be found in stem cells as well as in endothelial and reactive glial cells (e.g., in injury). Moreover, a single cell can express two or more of the above-mentioned markers under particular conditions. A virtually unlimited proliferative capacity allows stem cells to self-renew after symmetric divisions or to give rise to precursor cells after asymmetric divisions (Gage, 2000; van der Kooy and Weiss, 2000; Watt and Hogan, 2000).

Stem cells have been found in the central nervous system of adult animals and humans. First, they have been found in the brain parts known for active neurogenesis throughout the life span: the SVZ of the lateral ventricles and the dentate gyrus (DG) of the hippocampal formation. Proliferative activity of cells in these parts was reported long ago (Altman and Das, 1965; Altman, 1969). The ability of cells in these parts to give rise to both astrocytes and neurons was later demonstrated (Reynolds and Weiss, 1992; Luskin, 1993; Palmer et al., 1995).

Both proliferative zones of the adult mammalian brain, the subgranular layer of the DG and the subependymal layer of the SVZ, demonstrate that cells glial by morphology and protein markers, but essentially stem cells can divide to generate both glial cells and neurons (Seri et al., 2001). Notably, these DG and SVZ stem cells first give rise to glial fibrillary acidic protein (GFAP)-negative actively dividing progenitor cells (type C in the subependymal zone and type D in the subgranular zone of the DG) and only then to neuroblasts (Seri...

Erscheint lt. Verlag 2.9.2011
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Histologie / Embryologie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Biologie Zoologie
Technik
ISBN-10 0-08-056093-8 / 0080560938
ISBN-13 978-0-08-056093-9 / 9780080560939
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 4,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich