International Review of Cytology -

International Review of Cytology (eBook)

A Survey of Cell Biology

Kwang W. Jeon (Herausgeber)

eBook Download: PDF | EPUB
2007 | 1. Auflage
264 Seiten
Elsevier Science (Verlag)
978-0-08-055511-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
190,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
International Review of Cytology presents current advances and comprehensive reviews in cell biology - both plant and animal. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research. Articles in this volume include Function and Evolution of the Vacuolar Compartment in Green Algae and Land Plants
(Viridiplantae), Cell biology and pathophysiology of diacylglycerol kinase family: morphological aspects in tissues and organs, Structure and function of desmosomes, Subepithelial Fibroblasts in Intestinal Villi: Roles in Intercellular Communication, and Syndrome of Aluminum Toxicity and Diversity of Aluminum Resistance in Higher Plants.
International Review of Cytology presents current advances and comprehensive reviews in cell biology - both plant and animal. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research. Articles in this volume include Function and Evolution of the Vacuolar Compartment in Green Algae and Land Plants(Viridiplantae); Cell biology and pathophysiology of diacylglycerol kinase family: morphological aspects in tissues and organs; Structure and function of desmosomes; Subepithelial Fibroblasts in Intestinal Villi: Roles in Intercellular Communication; and Syndrome of Aluminum Toxicity and Diversity of Aluminum Resistance in Higher Plants.

Front Cover 1
A Survey of Cell Biology 4
Copyright Page 5
Contents 6
Contributors 8
Chapter 1: Function and Evolution of the Vacuolar Compartment in Green Algae and Land Plants (Viridiplantae) 10
1. Introduction 11
2. Structure and Function of Vacuoles in Embryophytes 12
2.1. Types and functions of vacuoles 12
2.2. Structure and development of vacuoles 16
2.3. Protein targeting to vacuoles 17
3. Structure and Function of Vacuoles in Green Algae 19
3.1. Types and functions of vacuoles 19
3.2. Development of vacuoles 21
4. Evolution of Vacuolar Compartments in Plants 22
5. Concluding Remarks 26
Acknowledgments 27
References 27
Chapter 2: Cell Biology and Pathophysiology of the Diacylglycerol Kinase Family: Morphological Aspects in Tissues and Organs 34
1. Introduction 35
2. Molecular Heterogeneity 37
3. Gene Expression in the Brain 39
4. Morphological Analysis of the Subcellular Localization in Tissues and Organs 41
5. Pathophysiological Implications in Animal Studies 43
5.1. Brain (central nervous system) 43
5.2. Dorsal root ganglion (peripheral nervous system) 52
5.3. Lymphocytes 53
5.4. Heart 56
5.5. Lung 60
5.6. Female reproductive organs 60
5.7. Knockout mice 61
6. Concluding Remarks 62
Acknowledgments 63
References 63
Chapter 3: Structure and Function of Desmosomes 74
1. Introduction 75
2. Morphology 76
2.1. Ultrastructure of desmosomes 76
2.2. Morphological diversity of desmosomes and related junctions 79
3. Molecular Architecture 81
3.1. Desmosomal cadherins 81
3.2. Desmosomal plaque components 89
3.3. Cell type specificity of desmosomal composition 98
4. Biogenesis 106
4.1. Desmosome formation during development 106
4.2. Experimental analysis of desmosomal biogenesis 107
5. Dynamics 109
5.1. Desmosome dynamics during interphase and mitosis 109
5.2. Calcium-dependent alterations of desmosomes 110
5.3. Phosphorylation-dependent alterations of desmosomes 115
5.4. Regulators of desmosomal adhesion 116
6. Imbalance of Desmosomal Protein Synthesis in Transgenic Mice 117
6.1. Reduced production of desmosomal proteins 117
6.2. Overproduction and ectopic synthesis of wild-type and mutant desmosomal proteins 126
7. Interplay Between Desmosomes and Other Cell Components 127
7.1. Crosstalk with adherens junctions 127
7.2. Crosstalk with cytoskeletal filaments 129
7.3. Crosstalk with the nucleus 130
8. Desmosomes and Disease 132
8.1. Genetic diseases 132
8.2. Autoimmune diseases 138
8.3. Bacterial toxins 141
8.4. Cancer 142
9. Concluding Remarks 144
Acknowledgments 144
References 145
Chapter 4: Subepithelial Fibroblasts in Intestinal Villi: Roles in Intercellular Communication 174
1. Introduction 175
2. Morphological Features of Subepithelial Fibroblasts 177
2.1. Cell cycle, origin, and proliferation 178
2.2. Morphology of subepithelial fibroblasts in the small intestine 179
2.3. Culture of subepithelial fibroblasts 187
3. Receptors in Subepithelial Fibroblasts 194
3.1. Receptors detected by immunohistochemistry and in situ hybridization 194
3.2. Receptors detected by Ca2+ measurements in culture 196
4. Gap Junction Communication 200
4.1. Morphology of gap junctions in situ and in culture 200
4.2. Dye coupling between adjacent cells in culture 202
4.3. Permeability changes measured by the FRAP method 202
5. Mechanosensitive Networks via ATP Receptors 204
5.1. Mechanical stimulations evoke Ca2+ responses and ATP release in cultured subepithelial fibroblasts 205
5.2. Changes in mechanosensitivity with cell shape 208
5.3. Contractility of subepithelial fibroblasts 209
5.4. Propagation of Ca2+ signals from subepithelial fibroblasts to neural cells 211
6. Roles of Subepithelial Fibroblasts in the Villi 211
6.1. Regulation of the barrier/sieve function 212
6.2. Contractile mechanical frame and motility of the villi 213
6.3. Mechanosensors in the villi 215
6.4. Other signal transduction in the villi 217
7. Concluding Remarks 220
References 220
Chapter 5: Syndrome of Aluminum Toxicity and Diversity of Aluminum Resistance in Higher Plants 234
1. Introduction 235
2. Syndrome of Aluminum Toxicity 236
2.1. Aluminum-inhibited root cell elongation and cell division 236
2.2. Mechanisms of aluminum toxicity 236
3. Aluminum Resistance 242
3.1. Exclusion mechanisms 243
3.2. Internal detoxification of aluminum with organic acids 250
4. Beneficial Effect of Aluminum on Plant Growth 254
5. Concluding Remarks 254
Acknowledgments 255
References 256
Index 262

Chapter Two

Cell Biology and Pathophysiology of the Diacylglycerol Kinase Family: Morphological Aspects in Tissues and Organs


Kaoru Goto*; Yasukazu Hozumi*; Tomoyuki Nakano*; Sachiko S. Saino*; Hisatake Kondo      * Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
† Division of Histology, Department of Cell Biology, Tohoku University Graduate School of Medical Science, Sendai 980-8575, Japan

Abstract


Diacylglycerol kinase phosphorylates diacylglycerol to produce phosphatidic acid. These lipids serve not only as intermediate products in the synthesis of several lipids but also as bioactive molecules. Therefore diacylglycerol kinase is thought to play one of the central roles in lipid signal transduction via the metabolism of two messenger molecules. Molecular and cellular studies have revealed that diacylglycerol kinase consists of a family of isozymes and each has a unique character in terms of regulatory mechanism, binding partner, and subcellular localization. This review focuses on pathophysiological findings of the enzyme family, principally from a morphological point of view in tissues and organs in animal studies, which helps us to develop a picture of how diacylglycerol kinase works in our body.

Key Words

Diacylglycerol kinase

Pathophysiology

Lipid signal transduction

Phosphatidic acid

Lipid metabolism

1 Introduction


Lipid metabolism plays a pivotal role in a variety of cellular functions. It is well known that phosphoinositide (PI), a minor component of the lipid, is metabolized sequentially to produce several metabolites, including diacylglycerol (DG), phosphatidic acid (PA), and phosphatidylinositol 4,5-bisphosphate (PIP2) (Rhee and Bae, 1997). Among them, DG and PA serve not only as major intermediate products in the synthesis of several kinds of lipids but also as bioactive molecules (English et al., 1996; Wakelam, 1998).

In this regard, it should be noted that DG is not a single entity because it is also derived from phosphatidylcholine (PC) in addition to PI, and different DGs from different sources contain distinct acyl chains at the sn-1 and sn-2 position (Hodgkin et al., 1998; Wakelam, 1998). It has been reported that DG constitutes at least 50 structurally distinct molecular species, whose fatty-acyl groups can be polyunsaturated, diunsaturated, monounsaturated, or saturated. DG derived from PI is largely composed of polyunsaturated acyl chains (i.e., 1-stearoyl-2-arachidonoyl species), whereas DG originating from PC contains monounsaturated and saturated chains (Holub and Kuksis, 1978). The molecular diversity of DG is directly reflected in the diversity of PA because it is mostly produced by phosphorylation of DG. Therefore it is conceivable that different DG and PA species exert unique effects on cellular functions.

In addition, previous studies have also shown that DG (and presumably PA also) can be produced preferentially in various subcellular compartments including the plasma membrane, internal membranes, cytoskeleton, and nucleus (Divecha et al., 1991; Mazzotti et al., 1995; Nishizuka, 1992; Payrastre et al., 1991). These studies clearly show that the lipid second messenger DG may be generated locally in response to external stimuli or internal conditions in order to support different signal transduction pathways. From these data it is conceivable that the PI cycle, including DG metabolism, occurs throughout a cell and is regulated differently in each location, suggesting that PI-related molecules should also be posted at specific sites.

It was long believed that DG acts solely through the protein kinase C (PKC) family of isoforms (Becker and Hannun, 2005), but in addition to PKC DG also targets the guanine nucleotide exchange factor vav and Ras or Rap guanyl nucleotide-releasing proteins (Ron and Kazanietz, 1999). Furthermore, DG recruits a number of proteins to membrane compartments, including chimerins, protein kinase D, and the Munc 13 proteins (Topham, 2006; van Blitterswijk and Houssa, 2000). Among those a direct link is provided between DG generation and Ras activation via RasGRP (Ebinu et al., 1998; Lorenzo et al., 2001; Rong et al., 2002). RasGRP is composed of at least four members, RasGRP1–4 (Quilliam et al., 2002). All these GRP members have a pair of atypical EF hands (a calcium-binding motif) and the C1 domain, which represents a motif that is involved in the recognition of phorbol ester and DG.

PA is also believed to elicit many biological responses by itself. In fact, PA plays a role in cytoskeletal organization by inducing actin polymerization and stress fiber formation (Cross et al., 1996). It is also involved in the regulation of enzymes including inositide kinases, PAK1, PKC-ζ, Ras-GAP, and protein phosphatase 1 (Topham, 2006; van Blitterswijk and Houssa, 2000).

Under most circumstances phosphorylation of DG to PA is the major route for signaling DG metabolism. This reaction is catalyzed by an enzyme referred to as diacylglycerol kinase (DGK) (Kanoh et al., 1990). Therefore DGK is thought to play one of the central roles in lipid signal transduction because it is involved in the metabolism of two messenger molecules. Since molecular cloning of DGKα was first reported from the porcine cDNA library (Sakane et al., 1990), 10 mammalian DGK isozymes have been identified to date, including the recently cloned new member, DGKκ (Imai et al., 2005). Initially, DGK was considered to regulate PKC via attenuation of the DG signal and was often referred to as a regulator of PKC, because PKC was the only one known to be activated by DG as noted. However, recent progress in molecular biology has identified a number of “isoforms/isozymes,” which is also true for DGK and PKC and other molecules. Then, questions arose as to why so many isozymes exist, how each isozyme is involved in the metabolism of DG, and how the specificity of the DG signal is secured in a crowd of isozymes. One answer may be in the diversity of DG species containing different acyl chain compositions as described above, suggesting that different DG species might convey distinct signals (Marignani et al., 1996; Schachter et al., 1996). Another may come from the recent findings on binding partners. For example, it was reported that DGK isozymes may regulate RasGRPs in specific manners (Regier et al., 2005): DGKα regulates RasGRP1, whereas DGK ι binds and regulates RasGRP3. On the other hand, DGKζ inhibits the activities of RasGRP1, -3, and -4. In addition, it was also shown that DGK γ interacts with and activates β 2-chimerin, a Rac-specific GAP, in response to epidermal growth factor (Yasuda et al., 2007). These studies clearly show that the DGK family is intimately involved in the regulation of the initiation or promotion of cancer in an isozyme-specific manner (Regier et al., 2005). Beyond the specific interaction in each case, these findings have also suggested that a signaling specificity is guaranteed by direct molecular interaction and an on–off switch might be mediated by the enzymatic conversion of DG to PA in the molecular complex.

Diversities of molecular structures and the biological actions of DG and PA, together with their various subcellular signaling sites, as revealed by previous studies in mammalian cells, may be the reason why so many isozymes have been diversified for the DGK family in the course of evolution, though only one or a few isozymes have been reported in Escherichia coli (Preiss et al., 1986), Dictyostelium discoideum (De La Roche et al., 2002), Drosophila melanogaster (Harden et al., 1993; Masai et al., 1992, 1993), and other lower organisms (Luo et al., 2004; Topham, 2006; van Blitterswijk and Houssa, 2000). Therefore it is conceivable that each member of the DGK family plays a unique role in the regulation of the signal transduction mediated by DG and PA at distinct subcellular sites in a specific signaling complex.

A growing number of papers have been published on the functional implications of DGKs, and various findings have been reported on cultured cells using gene transfection. Despite scores of new findings, however, findings on cultured cells sometimes provoke more questions than answers. This may be partly due to the “diversity” in and around the DGK family, as is also true for other molecules. Furthermore, recent advances in molecular biology provide more experimental choices than nature can provide. In addition, combined information from different conditions and distinct cells may lead to a misunderstanding of the whole system. Therefore it is tempting to see whether the phenomenon observed in the cell culture system simulates pathophysiological conditions at an organism level.

This review focuses on pathophysiological...

Erscheint lt. Verlag 30.10.2007
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Histologie / Embryologie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zellbiologie
Technik
ISBN-10 0-08-055511-X / 008055511X
ISBN-13 978-0-08-055511-9 / 9780080555119
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 7,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich