International Review of Cytology -

International Review of Cytology (eBook)

A Survey of Cell Biology

Kwang W. Jeon (Herausgeber)

eBook Download: PDF | EPUB
2011 | 1. Auflage
304 Seiten
Elsevier Science (Verlag)
978-0-08-046912-6 (ISBN)
190,00 € inkl. MwSt
Systemvoraussetzungen
189,89 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
International Review of Cytology presents current advances and comprehensive reviews in cell biology - both plant and animal. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.
International Review of Cytology presents current advances and comprehensive reviews in cell biology - both plant and animal. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.

Cover 1
Copyright Page 5
Table of Contents 6
Contributors 8
Chapter 1: Plant Responses to UV Radiation and Links to Pathogen Resistance 10
I. Introduction 11
II. UV Radiation Damage to Plant Cells 11
III. Protective and Repair Mechanisms for Plant Defense Against UV Radiation 15
IV. UV Radiation and Cross-Tolerance to Environmental Stress 29
V. Concluding Remarks 33
Acknowledgments 34
References 34
Chapter 2: Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes 50
I. Introduction 51
II. Classification and the Main Properties of Eukaryotic DNA Polymerases 52
III. Fidelity of DNA Polymerases on Undamaged and Damaged Templates 73
IV. Roles of DNA Polymerases in the Safeguarding of Genome Function 89
V. Human Diseases Caused by Aberrant Replication 111
VI. Conclusions and Future Perspectives 113
Acknowledgments 113
References 114
Chapter 3: Sub-Second Cellular Dynamics: Time-Resolved Electron Microscopy and Functional Correlation 142
I. Introduction 143
II. Analytical Methods 144
III. Problems Solved by Correlated Time-Resolved EM and Functional Analyses 162
IV. Other Methodology 169
V. Concluding Remarks 175
Acknowledgments 176
References 176
Chapter 4: New Insights into Nucleolar Architecture and Activity 186
I. Introduction 187
II. Historical Background 188
III. Ribosomal Genes 191
IV. Nucleolar Structure and Function 199
V. Concluding Remarks and Future Directions 225
Acknowledgments 227
References 227
Chapter 5: Growth and Division of Peroxisomes 246
I. Introduction 246
II. Growth of Peroxisomes in Mammalian Cells and Tissues 251
III. Growth of Peroxisomes in Yeast 265
IV. Division of Peroxisomes 269
V. Concluding Remarks 283
Acknowledgments 284
References 284
Index 300

Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes


Youri I. Pavlov*,; Polina V. Shcherbakova*,; Igor B. Rogozin§,    * Eppley Institute for Research in Cancer and Allied Diseases
† Departments of Biochemistry and Molecular Biology, and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805
‡ Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805
§ National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
¶ Institute of Cytology and Genetics, Novosibirsk 630090, Russia

Abstract


The functioning of the eukaryotic genome depends on efficient and accurate DNA replication and repair. The process of replication is complicated by the ongoing decomposition of DNA and damage of the genome by endogenous and exogenous factors. DNA damage can alter base coding potential resulting in mutations, or block DNA replication, which can lead to double-strand breaks (DSB) and to subsequent chromosome loss. Replication is coordinated with DNA repair systems that operate in cells to remove or tolerate DNA lesions. DNA polymerases can serve as sensors in the cell cycle checkpoint pathways that delay cell division until damaged DNA is repaired and replication is completed. Eukaryotic DNA template-dependent DNA polymerases have different properties adapted to perform an amazingly wide spectrum of DNA transactions. In this review, we discuss the structure, the mechanism, and the evolutionary relationships of DNA polymerases and their possible functions in the replication of intact and damaged chromosomes, DNA damage repair, and recombination.

Key Words

DNA polymerase

DNA damage

Replication

Repair

Recombination

Fidelity

Mutagenesis

Evolution

Human disease

I Introduction


DNA replication is one of the most fundamental processes in biology. It is required for the proper transmission of genetic information. Accurate and efficient replication and repair of genomic DNA are the bases for the evolutionary determined level of conservation of the genetic information and the prevention of genetic diseases (Bielas and Loeb, 2005; Friedberg et al., 2002; Kondo, 1973; Loeb et al., 1974; Radman, 1999).

The mechanism of replication is a polynucleotide template-directed polymerization of deoxynucleoside triphosphates by a DNA polymerase using a “two-metal-ion” mechanism (Kornberg and Baker, 1991; Steitz, 1998). The synthesis occurs exclusively in a 5′ to 3′ direction. Therefore, the two antiparallel strands of DNA duplexes should be replicated by somewhat different machineries (Garg and Burgers, 2005b; McHenry, 2003). The current model postulates that the leading strand is synthesized continuously, whereas the lagging strand is synthesized in short patches that are sealed together by DNA ligase (Garg and Burgers, 2005b; Johnson and O'Donnell, 2005).

In addition to the replication of undamaged DNA, DNA polymerases are also involved in the replication and repair of damaged DNA. They participate in various excision repair pathways, in recombination repair, or in bypassing the blocking adducts, thus forming a network of proteins that acts sequentially in the maintenance of genome integrity (Budd et al., 2005; Stauffer and Chazin, 2004). A wide diversity of DNA substrates in various DNA transactions are used by DNA polymerases belonging to several structural families. This review summarizes the current knowledge about the roles of different DNA polymerases in DNA replication, repair, and recombination. We focus on DNA template-dependent DNA polymerases, omitting terminal transferases, reverse transcriptases, telomerases, and RNA polymerases, which are reviewed extensively elsewhere (Benedict et al., 2000; Boeger et al., 2005; Collins, 1996; Cramer, 2004; Kelleher et al., 2002; Lingner and Cech, 1998; Ren and Stammers, 2005).

Here we are unable to cover the immerse literature in the field and will focus on the main functions of DNA polymerases. During the past 3 years, excellent reviews on various aspects of DNA polymerases appeared: on replisome assembly (Johnson and O'Donnell, 2005), on polymerases at the fork (Garg and Burgers, 2005b), on the general functions of DNA polymerases (Bebenek and Kunkel, 2004) and their mechanisms related to structure (Rothwell and Waksman, 2005), on the mechanisms of translesion DNA synthesis (Prakash et al., 2005), on the structure of translesion DNA polymerases (Yang, 2005), on the mechanisms of polymerase switch (Friedberg, 2005; Friedberg et al., 2005; Ulrich, 2005b), on DNA polymerase fidelity (Kunkel, 2004), on the regulation of DNA replication through the S phase (Takeda and Dutta, 2005), on replication complexes in genome stability (Toueille and Hubscher, 2004), and many others. We cite only cornerstone experimental papers and most frequently refer the reader to recent reviews.

II Classification and the Main Properties of Eukaryotic DNA Polymerases


A Overview of the Maintenance of Genome Stability


The bases in cellular DNA are continuously damaged by spontaneous hydrolysis and oxidation and other endogenous and environmental mutagens (Table I). The mutation rate in mammals, however, is kept low with one mutation or less per effective genome per sexual generation (Drake, 1999). Accurate and efficient replication and repair processes have evolved to achieve this goal. Most of these processes include DNA synthesis by DNA polymerases (Fig. 1). Intact DNA molecules are replicated with high fidelity (up to 10−11 per base replicated) due to three sequential fidelity control steps: base selection by DNA polymerases, exonucleolytic proofreading, and DNA mismatch repair (MMR) (Fig. 1, pathway A) (Kunkel and Bebenek, 2000; Morrison et al.,1993; Schaaper, 1993). It is important for accurate replication that the deoxyribonucleoside triphosphate (dNTP) pools are devoid of mutagenic contaminants (Maki and Sekiguchi, 1992) and balanced in a way to ensure the best performance of fidelity mechanisms (Chabes and Thelander, 2003; Kunz, 1988; Mathews and Ji, 1992; Meuth, 1989). Damaged nucleotides in DNA can be repaired by nucleotide excision repair (NER) or base excision repair (BER) reactions (left part of Fig. 1). In this case, a polymerase uses the intact information of the undamaged DNA strand to restore the correct nucleotide sequence. Intermediates of NER and BER are single-strand breaks that may be converted to double-strand breaks (DSB) during replication (Courcelle and Hanawalt, 2003; Hanawalt, 1966; Kouzminova and Kuzminov, 2006). DSB can also be induced by a variety of genotoxicants (Friedberg et al., 2006). The breaks are extremely dangerous unless repaired by either homologous recombination using an intact homologous duplex or by nonhomologous end-joining (NHEJ) that might require specialized DNA polymerases for processing DNA ends. The damaged templates could also be replicated by specialized translesion synthesis (TLS) DNA polymerases whose active sites can accommodate unusual base pairs (DNA damage bypass, pathway B in Fig. 1). Some agents cause cross-links between antiparallel DNA strands. In this case, the genetic information at the damaged site is lost and can be restored only by recombination with an intact homologous DNA molecule. The pathway of cross-link repair involves a combination of NER, TLS, and recombination. In addition to the replication, repair, and recombination pathways that prevent genome instability, DNA polymerases can also participate in the developmental processes that require elevated mutagenesis in a small part of the genome. For example, to generate immunoglobulin variability, DNA damage is introduced by specific enzymes into certain genomic sites and is repaired by error-prone processes (Section IV.E).

Table I

Types and Quantities of Common Damaged Nucleotides in DNA

Spontaneous 10 000 (1,7) 2400–3600 (4) 20–100 (6) 6000 (6) 500 (1) 2000 (6)
Induced 250 000,a (3) 108 000,b (2) 210 000,c (10) 2 400 000,c (10) >60 000,d (8,11,12) 30...

Erscheint lt. Verlag 21.9.2011
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Histologie / Embryologie
Naturwissenschaften Biologie Zellbiologie
Technik
ISBN-10 0-08-046912-4 / 0080469124
ISBN-13 978-0-08-046912-6 / 9780080469126
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 4,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich